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Investigation of the Dual-Tree Complex and
Shift-Invariant Discrete Wavelet Transforms
on Quickbird Image Fusion

Styliani Ioannidou and Vassilia Karathanassi

Abstract—In the current survey, the performance of the shift-
invariant discrete wavelet transform and dual-tree complex
wavelet transform (DT-CWT) for Quickbird image fusion is inves-
tigated. For this purpose, a DT-CWT fusion algorithm is developed
and implemented on high-resolution multispectral and panchro-
matic Quickbird images of Heraclion, Crete, Greece. In order
to point out the effectiveness of the aforementioned transforms,
the resulting imagery is visually (through photointerpretation)
and computationally (through index computations) compared to
fusion products derived by other commonly used methods, such as
the intensity hue saturation transform (IHS), the discrete wavelet
transform, and the crossbred wavelet and IHS transform. The
DT-CWT has been proved to provide a complete and effective tool
for Quickbird image fusion.

Index Terms—Dual-tree complex wavelet transform (DT-CWT),
fusion, Quickbird, shift-invariant discrete wavelet transform
(SIDWT), wavelets.

I. INTRODUCTION

ULTISENSOR image fusion is the procedure of imple-

menting appropriate algorithms that associate, correlate,
and combine datasets derived from various satellite systems
to produce remotely sensed images with desirable features,
i.e., images that accumulate the spectral characteristics of the
initial multispectral bands and the geometry of the very high-
resolution panchromatic band.

Quickbird, for example, is a very high-analysis multispectral
and panchromatic satellite sensor acquiring imagery with 8- and
2-ft resolution, respectively. Thus, fusion methods producing
multispectral bands with 2-ft resolution are of significant im-
portance for remote-sensing applications.

Among data-fusion methods, the discrete wavelet transform
(DWT) [3] is a flexible tool capable of both time and frequency
analyses of input signals in a multiresolution environment basis.
Apart from its various advantages, two main drawbacks of the
DWT [1] are the existence of shift variance and the directional
constraint in diagonal feature extraction (45° plane).

One of the oldest transforms compensating the DWT disad-
vantages is the shift-invariant DWT (SIDWT), which is based
on the fact that not all shifts are necessary for perfect signal
reconstruction [5], [6].
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A near-shift independent wavelet-oriented method is the
dual-tree complex wavelet transform (DT-CWT) [1], which
deals with the shift variance phenomenon using parallel wavelet
filtering with directionality support (six planes). This filtering
provides a 1/2 sample delay in the wavelet branches of the dual
trees allowing near-shift invariance and perfect reconstruction.

In this letter, a DT-CWT-based fusion algorithm is developed.
This algorithm and the existing algorithm based on the SIDWT
are for the first time applied on Quickbird imagery. Their results
are compared to the results produced by conventional fusion
algorithms such as those based on the DWT, the intensity hue
saturation (IHS), and the crossbred wavelet and IHS (WIHS)
transform.

II. SIDWT AND DT-CWT RELATED THEORY

Once the DWT is implemented, every second wavelet co-
efficient at each decomposition level is discarded, resulting
in components highly dependent on their location in the sub-
sampling vector and with great uncertainty as to when they
occurred in time. This unfavorable property is referred to as
shift variance and can be avoided by implementing a transform
known as the SIDWT. Contrary to the simple DWT fusion
method, no subsampling occurs, leading to highly redundant
wavelet decomposition [5].

Rockinger [5] proposed a shift-invariant wavelet algorithm
by oversampling the plain DWT.

Disregarding the severe computational cost ((3*J 4 1) co-
efficients for J analysis levels) and its overcompleteness, the
use of an undecimated SIDWT would, yet, not solve the output
directionality constraint mentioned in the Introduction [2].

The DT-CWT idea is based on the use of two parallel treelike
filter series that implement complex wavelet filtering on the
input signals. These trees provide the signal delays necessary
for every level of multiresolution analysis, so as to eliminate
aliasing effects and achieve shift invariance [2].

As far as the DT-CWT is concerned, since complex wavelets
can discriminate positive from negative frequencies, the diag-
onal subbands can be distinguished into more directions than
the ones that the simple DWT produces (2*.J DWT coefficients
for J analysis levels). The two-dimensional (2-D) DT-CWT
produces 22+ .J coefficients of analysis.

III. DT-CWT FUSION ALGORITHM

The DT-CWT fusion algorithm (Fig. 1) first implements a
forward DT-CWT to the input satellite data, decomposing the
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Fig. 1. DT-CWT fusion algorithm developed.

panchromatic and multispectral bands into the coefficients of
wavelet analysis. This is achieved by a near-symmetric 13—19
tap filter with a 14—14 shift filter.

Having decomposed the initial datasets, their multiresolu-
tion and multidirectional descriptions are derived, along with
respective magnitudes. Wavelet and scaling coefficients are ex-
tracted from each of the multispectral and panchromatic bands.
Wavelet coefficients express the detail coefficients, and scaling
coefficients are approximations of the initial bands. After the
complex wavelet-based analysis, the fusion rule occurs.

The rule suggests the combination of the panchromatic
band’s wavelet coefficients with the multispectral bands’ scal-
ing coefficient. That is, the outcome of successive lowpass

filtering on the multispectral bands and the outcomes of succes-
sive highpass filtering on the panchromatic image (all six direc-
tional planes) are combined (Fig. 1). After the implementation
of the fusion rule, an inverse DT-CWT is generated between
selected features. The final fused image has accumulated the
geometry of the panchromatic band (2-ft analysis) and the
spectral analysis of the multispectral bands.

IV. IMPLEMENTATION OF FUSION ALGORITHMS

A. Datasets

The data consist of two sets of images: the first representing a
peri-urban area and the second depicting an offshore urban one.
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Both are parts of a multispectral and panchromatic Quickbird
image of Heraclion, Crete, Greece.

Subsets have been selected in order to include a variety of
land-use categories, i.e., buildings, roads, sea, vegetation, grass,
and bare soil, delimited by many multioriented edges. The land-
use variety implies a variation in spectral signatures, which
should be respected in the fused spectral bands, independently
of the spectral range of the panchromatic band that is used
during the fusion procedure. Moreover, edges on the fused
images should be as clear as possible, independent of their
orientation.

B. Preprocessing

Since the majority of the applied fusion algorithms (apart
from IHS) have been developed on a DWT basis, preprocessing
has been set to meet DWT requirements. Given that each level
of wavelet analysis produces a digital image with half the
spatial resolution of the initial one, for a successful pixel-based
wavelet image fusion, the ratio of the spatial resolutions of the
input imagery must be a power of two. High-resolution mul-
tispectral and panchromatic satellite sensors (i.e., Quickbird,
IKONOS, and SPOT-5) meet this requirement, therefore from
this point of view, no resampling is needed. Due to the fact that
the grids of the panchromatic and multispectral images are not
coincident, a pixel from the first image does not fully match
its twin in the second image. Thus, in this letter, resampling
has been implemented for subpixel coregistration-accuracy
purposes.

C. Processing

The 2-D SIDWTs proposed by Rockinger and the DT-CWT
have been applied on the datasets. For evaluation purposes, the
DWT, the IHS, and the WIHS transforms have also been im-
plemented. Since the spatial resolution of Quickbird panchro-
matic imagery is four times the spatial resolution of Quickbird
multispectral imagery, three levels of analysis are needed for
all wavelet-based fusion algorithms. In this letter, the Haar
wavelet—which is the most commonly used and is included in
most software packages—has been implemented for all image
case studies apart from the DT-CWT, which uses complex-
based wavelets.

All computations have been performed on a Pentium IV
personal computer, using a 3.00-GHz processor, running
Windows 2000. The MATLAB codes implementing the for-
ward and inverse DT-CWT are courtesy of Dr. Nick Kingsbury,
and for all wavelet-based methods, the Image Fusion Toolbox
for MATLAB developed by Oliver Rockinger has been used.
For THS-based methods, ER Mapper was used.

V. FUSION RESULTS
The fusion algorithms were applied on the two datasets. The
results for the peri-urban area are presented in Fig. 2(a)—(g).
VI. EVALUATION

Since human perception uses the most integrated mecha-
nisms that include spectral statistical and spatial criteria for

Fig. 2. (a) Original true-color composite. (b) Original panchromatic
Quickbird image. (c¢) DWT fused image. (d) SIDWT fused image. (¢) DT-CWT
fused image. (f) IHS fused image. (g) WIHS fused image of Quickbird imagery
of a peri-urban area of Crete, Greece.

evaluating fusion results, photointerpretation evaluation has
taken place first. Photointerpretation of the final fused images
has shown that the IHS fusion transform is obviously prone
to spectral distortions, although it produces excellent spatial
characteristics. The wavelet-based fusion algorithms (DWT,
DT-CWT, and SIDWT) have ascribed the initial spectral infor-
mation satisfactorily, with minor visual differences. However,
the DWT and WIHS fusion algorithms have produced objects
with obvious jagged edges, a sign of spatial distortion (Fig. 3).

The SIDWT produces fused results with satisfactory spectral
characteristics but relatively ambiguous object edges (moder-
ate spatial attribution), whereas the DT-CWT has produced
well-balanced results with adequate both spectral and spatial
details (Fig. 3).
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Fig. 3. Detail of peri-urban area image. (a) Original multispectral Quickbird
image. (b) Original panchromatic Quickbird image. (c) DWT. (d) SIDWT.
(e) DT-CWT. (f) IHS. (g) WIHS transform.

As far as the numerical evaluation of the fusion process is
concerned, three types of indexes were used: The 2-D corre-
lation index (r) [4], the peak-signal-to-noise ratio (PSNR) [8],
and the similarity-based quality index (SSIM) have been used
[7]. The 2-D correlation index is a statistical index showing
correlation of the values of the pixels between two images
compared. The entire image is taken into consideration during
calculations. The PSNR is a physical-statistical index showing
the ratio between signal and noise in an image. The SSIM
index is a similarity-based structure studying the combination
of image contrast and luminance.

TABLE 1
PSNR INDEX BETWEEN FUSED AND ORIGINAL MULTISPECTRAL BANDS,
IMPLEMENTING VARIOUS IMAGE-FUSION METHODS

PSNR index (multispectral bands)

Band Method
DWT SIDWT  DTCWT IHS WIHS
Img. blue 30,3416 31,4903 31,4995 29,6339 24,0650
1
green 31,4538 32,3941 31,8656 27,9065 24,0740
red 31,3060 32,2095 31.7761 29.2831 24,0658
Band Method
DWT SIDWT DTCWT THS WIHS
Img. blue 31.7805 32,7908 32,7625 24,8583 27,0950
2
green 32,8300 33,5278 33,1197 24,5767 25,8100
red 32,6579 33,3570 33,0285 25,9805 25,1352
TABLE 11

CORRELATION INDEX BETWEEN FUSED AND ORIGINAL MULTISPECTRAL
BANDS, IMPLEMENTING VARIOUS IMAGE-FUSION METHODS

Two dimensional correlation index (multispectral bands)

Method
Band  hwr  SIDWT  DTCWT  IHS WIHS
mel e 07686 0792 08620 07331 08303
green 09150 09342 09159 08087  0,8759
red 08992 09196 09001 08684 09051
Method
Band W SIDwT  DTCWT  IHS  WiIHS
Img2 e 0809 08397 08218 08914 038903
green 09425  0,9539 09442 09151 09153
red 09374 09494 09407 09350  0,9436

Of the above indexes, the 2-D correlation is insufficient
because it does not fully describe all statistical dimensions
of an image, whereas the PSNR and SSIM indexes provide
a more complete understanding. Any significant differences
between index values start from the second decimal place.
For all indexes, high index values imply high quality of fused
images in terms of spectral information. Spatial criteria are not
introduced in these indexes. They can be indirectly implied only
on the basis of the spectral consistency between the initial and
the fused image.

Among the three indexes, the PSNR index presents a steady
behavior (Table I), pointing the SIDWT (31.49-32.21) as the
most effective fusion algorithm for all bands and datasets
followed closely by the DT-CWT. The method that comes third
is the DWT.

Regarding the 2-D correlation indexes (Table II), the same
conclusions are produced for the green and red bands: SIDWT
(first) and DT-CWT (second) are the most effective fusion
algorithms.

The SSIM (Table III) is the index with the highest range of
values (0.34-0.79) because of the inclusion of both contrast
and luminance criteria. According to the evaluation, for the
red and green bands, the SIDWT appears to provide the best
fusion results (0.75 for the green and 0.70 for the red band)
followed by the DWT (0.73 for the green and 0.68 for the
red band). Given the obviously degraded spatial results of this
algorithm (Fig. 3), the weakness of the index in evaluating
spatial characteristics is substantiated. The DT-CWT takes the
third place (0.73 for the green and 0.64 for the red band).
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TABLE III
SSIM INDEX BETWEEN FUSED AND ORIGINAL MULTISPECTRAL BANDS,
IMPLEMENTING VARIOUS IMAGE-FUSION METHODS

SSIM index (multispectral bands)

Band Method
DWT SIDWT  DTCWT IHS WIHS
Img. blue 0,53230 0,79050 0,55600 0,67240 0,73540
1
green  0,68400 0,73140 0,67220 0,60020 0,56560
red 0,65890 0,70560 0,64950 0,59250 0,34940
Band Method
DWT SIDWT DTCWT [HS WIHS
Img. blue 0,65150 0,69070 0,66440 0,45700 0,73880
2 green  0,75110 0,78040 0,73960 0.41950 0,69740
red 0,73000 0,75900 0,72060 0,48780 0,35170

The spectrum of the panchromatic band includes part of the
near infrared region and does not fully overlap with the blue
region, causing problematic spectrum matching. Each fusion
algorithm covers this defect in a different way, which becomes
obvious in the evaluation results of the blue band. The three
indexes present the highest differences in their evaluation.
According to the SSIM, the best results are produced by the
SIDWT and the WIHS. The 2-D correlation index shows that
the first place is shared by the DT-CWT (first dataset) and the
IHS (second dataset), and the WIHS holds the second place.
The PSNR presents the DT-CWT and the SIDWT as the best
fusion algorithms. Thus, objective conclusions based on the
indexes cannot be drawn for this band.

Based on the evaluation of all indexes, the spectral
distortions of IHS fused results, clearly observed through
the photointerpretation procedure, are successfully quantified.
Moreover, based on the same evaluation, we note essential
improvements in terms of spectral attribution produced by the
WIHS algorithm.

VII. CONCLUSION

In the current survey, the DT-CWT-based fusion algorithm
was developed and applied for the first time on Quickbird
imagery. For evaluation purposes, the DT-CWT fusion results
were compared to the results from other wavelet-based and
color-related techniques, such as the DWT, the SIDWT, the IHS
transform, and the WIHS.

As far as the evaluation is concerned, a photointerpretation
procedure as well as a numerical evaluation took place.
Through the former, emphasis was given on the clearness of

the fused image (e.g., unambiguous edges, revealing of details,
etc.), whereas the latter focuses on the quantified evaluation of
the preservation of the spectral information of the initial data
on the fused results. Three types of numerical indexes were
used: the 2-D correlation, the PSNR, and the SSIM index.

Based on the interpretation results, it was proved that the
DT-CWT algorithm produces images with excellent spatial
characteristics similar to those produced by IHS. Compared
to other wavelet fusion algorithms, it most eliminates spatial
distortions followed by the SIDWT and WIHS algorithms. In
the spectral domain, evaluation indexes and photointerpretation
converge on the evaluation of the SIDWT as the algorithm with
the highest preservation of the spectral information. DT-CWT
closely follows as well as the DWT fusion algorithm. The IHS
transform presents the worst results. Regarding computational
cost between SIDWT and DT-CWT, complexity of the SIDWT
is much higher than the respective of the DT-CWT.

Based on the overall evaluation criteria, the DT-CWT ap-
pears to be an effective tool for Quickbird image fusion. The
weakness of Quickbird panchromatic image to fully cover the
blue spectral region becomes obvious through the numerical
evaluation of the blue fused band. Similar evaluation results
are expected in case that the infrared band, instead of the
blue, participates in the fusion procedure. However, this will
be subject of future work.
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