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ABSTRACT 
 
Defining pixel correspondences in stereo-pairs is a fundamental process in automated image-based 3D reconstruction. In this con-
tribution we report on an approach for dense matching, based on local optimization. The approach represents a fusion of state-of-the-
art algorithms and novel considerations, which mainly involve improvements in the cost computation and aggregation processes. The 
matching cost which has been implemented here combines the absolute difference of image colour values with a census transforma-
tion directly on images gradient of all colour channels. Besides, a new cost volume is computed by aggregating over cross-window 
support regions with a linearly defined threshold on cross-window expansion. Aggregated costs are, then, refined using a scan-line 
optimization technique, and the disparity map is estimated using a ‘winner-takes-all’ selection. Occlusions and mismatches are also 
handled using existing schemes. The proposed algorithm is tested on a standard stereo-matching data-set with promising results. The 
future tasks mainly include research on refinement of the disparity map and development of a self-adaptive approach for weighting 
the contribution of different matching cost components. 
 
 

1. INTRODUCTION 
 
Generation of dense 3D information using calibrated image sets 
is an integral part of several applications in the field of photo-
grammetry and computer vision, e.g. in 3D reconstruction, DSM 
production, novel view synthesis or automatic navigation. Typi-
cally, image-based 3D modeling requires the automation of two 
distinct processes that involve the establishment of correspon-
dences among images, namely image orientation and dense 3D 
surface reconstruction. Although we have implemented an algo-
rithm for automatically recovering orientations of (calibrated) 
images via point correspondences, this falls outside the scope of 
the present work in which the question of dense stereo matching 
is addressed. In the following, image orientation parameters are 
assumed as known, and images are rectified to epipolar geome-
try to restrict search space (1D search along epipolar lines). 
 
Accurate disparity maps (storing the x-parallax for every image 
pixel), extracted from stereo imagery, often serve as the basic 
source of 3D data since they combine effectiveness along with 
low cost compared to active acquisition techniques such as laser 
scanning. During the last decade a large number of efficient al-
gorithms have been proposed for estimating accurate disparity 
maps from single stereo-pairs. The effectiveness of such algo-
rithms has been extensively evaluated in surveys (Scharstein & 
Szeliski, 2002, Hirschmüller & Scharstein 2009) and a dedica-
ted web site (http://vision.middlebury.edu/stereo/). After Schar-
stein & Szeliski (2002), the computation of dense stereo corres-
pondences may be broken down into four main steps. 
 
• Matching cost initialization, where for every individual pixel 
a cost value is assigned to all possible disparities. Typical costs 
rely on a similarity measure of the intensity or colour values for 
corresponding pixels, such as the absolute or square differences 
and normalized cross-correlation. All above measures, in addi-
tion, may be replaced or even combined with other costs which 
are more robust to radiometric differences, to texture-less areas 
or to regions with proximity to occlusion borders. Thus Klaus et 

al. (2006) have used a weighted sum of colour intensities and 
image gradients; Hirschmüller (2008) has employed the Mutual 
Information approach in a semi-global context, while Mei et al. 
(2011) have combined absolute colour differences with a non- 
parametric image transformation (census). 
 
• Cost aggregation. This step is founded on the assumption that 
neighbouring pixels share the same disparity, thus a summation 
(aggregation) of initial pixel-wise matching costs (from the first 
step) is carried out over a support region around each pixel. The 
simplest form of such support regions are rectangular windows 
of fixed or variable size. Fixed windows with weights varying 
with colour similarity and spatial proximity to the central pixels 
(Yoon & Kweon, 2006), as well as regions of arbitrary shape, 
e.g. of the cross-type (Zhang et al., 2009), rely on the further as-
sumption that neighbouring pixels with similar disparities have 
similar colours; they are proved to be more accurate, especially 
for areas close to occlusions. 
 
• Disparity optimization. Here an optimal disparity value is se-
lected for every image pixel. Local methods (region-based) usu-
ally follow a ‘winner-takes-all’ strategy, i.e. the disparity with 
the smallest aggregated cost is chosen. Global methods, on the 
other hand, perform the optimization over all image pixels by 
simultaneously enforcing a smoothness constraint. An energy 
function is defined as the sum of the initial or aggregated cost 
combined with the smoothness term; the disparity map is com-
puted via a minimization of this energy function. Regarding the 
latter, various approaches have been implemented based on par-
tial differential equations (Faugeras & Keriven, 1998; Strecha 
et al., 2004), dynamic programming (Veksler, 2005), simulated 
annealing (Barnard, 1986), belief propagation (Sun et al., 2003) 
and graph-cuts (Kolmogorov & Zabih, 2001). Global methods 
generally provide accurate results, yet they face limitations in 
memory and speed, especially in cases of large images. On the 
other hand, local methods are often easier to implement, suffi-
ciently fast for real-time tasks and (as lately reported, e.g. in the 
cited Middlebury test-bed) can provide highly accurate results.  



 • Disparity refinement. This final step is taken in order to eli-
minate or correct ambiguous/inaccurate disparity values by fur-
ther processing the disparity map obtained in the previous step. 
Commonly used procedures include scan-line optimization, me-
dian filtering, sub-pixel estimation, region voting, peak removal 
or occluded and mismatched area detection as well as interpola-
tion (Hirschmüller, 2008; Zhang et al., 2009; Mei et al., 2011). 
 
In this paper we present an implementation for stereo-matching 
which integrates several state-of-the-art techniques for all above 
steps, while proposing certain improvements for the cost com-
putation and cost aggregation processes. In particular, the pro-
posed matching cost combines through an exponential function 
the absolute difference of the image colour values (RGB) along 
with a census transformation not on the intensity values but on 
the gradient images of all three colour channels. The costs of all 
pixels of the reference image over all possible disparities are 
stored in the form of a Disparity Space Image (DSI) (Bobick & 
Intille, 1999). Secondly, a new cost volume is computed by an 
aggregation of costs over cross-window support regions, similar 
to Zhang et al. (2009) and Mei et al. (2011). However, in our 
approach a linear threshold is imposed on cross-window expan-
sion, which combines the two thresholds (colour similarity and 
spatial proximity) of Mei et al. (2011) in a smoother way. The 
aggregated costs are further refined using a scan-line optimiza-
tion technique (Mattoccia et al., 2007; Mei et al., 2011), and the 
disparity map is estimated using a ‘winner-takes-all’ selection. 
Occlusions and mismatches are also detected using the scheme 
of Hirschmüller (2008), and new disparity values are interpola-
ted. Finally, sub-pixel estimation is performed in order to im-
prove the final disparity map. The proposed algorithm is evalu-
ated on the Middlebury stereo-matching data-set. 
 
 

2. COST FUNCTION 
 
Over the years, a wide variety of measures for the implementa-
tion of matching approaches has been proposed in literature. In 
a survey of stereo matching costs (Hirschmüller & Scharstein 
2009), the most important among them have been presented and 
assessed. The most usual measures are the Absolute Difference, 
the Squared Difference, the Normalized Cross Correlation and 
measures relying on filters that transform the input images, such 
as the median, the mean, LoG or more sophisticated tools like 
bilateral filtering (Tomasi & Manduchi, 1998). Non-parametric 
transformations, as the rank and the census transformations (Za-
bih & Woodfill, 1994), produce robust results based on relation-
ships of pixels with their neighbourhood. The Mutual Informa-
tion approach has been proposed as a more advanced cost func-
tion for dealing with stereo-images with radiometric differences 
(Hirschmüller, 2008). Furthermore, pixel-wise descriptor mea-
sures, like DAISY (Tola et al., 2010), have yielded promising re-
sults in global formulations for wide-based stereo.  
 
2.1 Census 

Census (c) is a non-parametric image transformation. A binary 
vector of pixel p forms a map of neighbouring pixels, whose in-
tensity is less than that of p (Zabih & Woodfill, 1994) for a sup-
port neighbourhood N. As a result, a binary vector I of length 
mN×nN is assigned to each pixel. Thus, if q is a neighbour of p: 
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Census transformation depends on the relations of a pixel with 
its surroundings within the image patch. It is thus robust against 
changes in brightness/contrast. Moreover, individual pixel in-
tensities do not cumulatively affect the overall measure but only 
a specific bit of the binary descriptor of the reference pixel p. 
Thus, census improves matching results in texture-less regions, 
around discontinuities and in cases of noisy pixels.  
 
In the present implementation, the transformation is performed 
not on gray-scale intensity but on each colour channel of the 
original image as well as on the two principal directions of the 
image gradient. This approach provides a considerably extend-
ed vector IC (Eq. 3):  
 

( )
{ }

( )C q Np pR G B
p

I p = c p,q
I I I I I

,
x y

, , ∈∈
∈

∂ ∂

∂ ∂

⊗ ⊗ ⊗
⎧ ⎫
⎨ ⎬
⎩ ⎭

(3) 

 
whereby ⊗ denotes the act of concatenation. For RGB images, 
for instance, use of the gradient of each channel in each of the 
x, y image directions results in a vector of dimension ×6 compa-
red to the original vector. Census transform based on the image 
gradients appears to be more robust and less sensitive to radio-
metric differences, whereas the discriminative capability of this 
binary descriptor increases, leading to results of higher accura-
cy. The matching cost between a pixel p in the reference image 
and its corresponding pixel p' in the matching image for a parti-
cular disparity value d is calculated through the Hamming dis-
tance CCensus (Hamming, 1950), which represents the number of 
unequal elements in the two binary vectors. 
 
2.2 Absolute Difference 
 
The Absolute Difference (AD) is a simple measure widely used 
in matching. Though sensitive to radiometric differences, it has 
been proved as an effective measure when it is combined with 
flexible aggregation areas and it refers to combination of all co-
lour layers. The cost term CAD is defined as the average AD va-
lue of all three channels (Eq. 4), which leads to superior results 
compared to matching on separate channels or gray-scale: 
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2.3 Total matching cost 

The final matching cost is derived by merging the two different 
costs expressing the Absolute Difference in colour (or intensity) 
and the Census transformation in image gradients. Costs CAD 
and CCensus are combined via an exponential function ρ (Yoon & 
Kweon, 2006; Mei et al., 2011): 
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Figure 1. Above: the original Tsukuba stereo-pair. Middle: gra-
dients in x (left) and y (right) of the left image on the first chan-
nel. Below: disparity map of the left image obtained from Cen-
sus on intensity (left) and Census on RGB/gradients with AD in 
cost function (right) after the aggregation step. 
 

Figure 2. Example for the Cone stereo-pair with its gradient and
disparity images (for explanations see caption of Fig. 1). 
 
The function ρ has the advantage of taking values in the field of 
[0, 1) for C ≥ 0. The two cost volumes CAD and CCensus are thus 
scaled in the same value field, presuming a suitable selection of 
the respective regularization factors λAD, λCensus. The values of 
each cost should be regularized by λ so that in ρ(x) 0.5 ≤ C ≤ 1.5 

to ensure equal contribution to the final cost, or tuned different-
ly to accordingly adjust the impact of each term on cost. Tests 
were performed on the Middlebury data-set for stereo-matching 
(Scharstein & Szeliski, 2002, 2003). In Fig. 1 an example from 
this data-set (Tsukuba) is given which illustrates the differences 
in disparity due to the application of Census on gradient images 
as described here. Fig. 2 presents a further example (Cone). No 
noticeable change is observed in this second example, but in the 
first case results display a significant improvement. There is a 
1.5% decrease in ‘bad’ pixels in the Tsukuba pair when compa-
ring for erroneous disparities above the 1 pixel threshold. Also, 
the proposed algorithm is among the best performing in the sub-
pixel comparison of the same pair. Finally, in Fig. 3 the errors 
in the matching results of the proposed cost function are seen as 
compared to the true (reference) disparity maps of the data-set 
at the >1 pixel level. 
 

Figure 3. Left: reference disparity maps of the left image of the 
Tsukuba and Cone stereo-pairs. Right: matching errors due to 
occlusions (gray) and mismatches (black). 
 
 

3. COST AGGREGATION 
 
Local methods seek to fix an adequate support region where to 
aggregate the cost, which accounts for a disparity label of all pi-
xels included in the neighbourhood. There exist three main ap-
proaches through which one may address this question: use of 
support weights, adaptive windows and multiple window sizes. 
Methods based on support weights make use of a window fixed 
in size and shape. Within this window a weight is attributed to 
each pixel, calculated according to colour similarity and geome-
tric proximity (Tomasi & Manduchi, 1998; Yoon & Kweon, 
2006) or other criteria (Yihua et al., 2002). Adaptive windows 
represent an attempt to find the optimal shape and size of a sup-
port region, often leading to windows of irregular shapes. Such 
cases are shiftable windows or windows anchored at pixels dif-
ferent than the central one (Bobick & Intille, 1999; Kang et al., 
2001; Fusiello et al., 1997). The third approach relies on local 
variation of intensity and disparity (Kanade & Okutomi, 1991; 
Veksler, 2003). Theory from the field of image filtering, on the 
other hand, has contributed the idea of shape-adaptive windows 
which are based on separate circular sectors across multiple 
directions around a pixel (Foi et al., 2007; Lu et al., 2008). Fi-
nally, other processes on multiple windowing have been propo-
sed by Fusiello et al. (1997) and Kang et al. (2001).   
 
Local approaches of stereo-matching are based on the definition 



of pixel neighbourhood. It is supposed that the pixels within this 
neighbourhood share the same disparity; front-parallel surfaces 
are thus favoured. Foundation of adaptive approaches is the fact 
that pixels of a support region ought to have similar colours and 
to decrease in coherence ‘normally’ with their distance from the 
reference pixel in image space. In a recent work, geometric pro-
ximity has been combined with colour similarity in the CIELab 
colour space in an attempt to improve simulation of human per-
ception (Yoon & Kweon, 2006). In the process of locating opti-
mal shape and size of a cost aggregation region around a pixel, 
a fast and efficient algorithm has been introduced resulting in 
windows of the cross-type having arbitrary shape (Zhang et al., 
2009); more recently, an extended GPU-efficient version of this 
approach was proposed (Mei et al., 2011), which is currently at 
the top of the comparison list for the threshold of 1 pixel errors 
in the Middlebury stereo-evaluation site. 
 
3.1 Support region formation 
 
In this paper, a modification of the cross-based support region 
approach is used. The construction of such cross-based support 
regions is achieved by expanding around each pixel p a cross-
shaped skeleton to create 4 segments (h+, h−, v+, v−) defining 
two sets of pixels H(p), V(p) in the horizontal and vertical di-
rections as seen in Fig. 4 (Zhang et al., 2009; Mei et al., 2011).  
 

H(p)

H(q)

p

q

S(p)

V(p)

 
Figure 4. Expansion of the cross-based support region S(p) dri-
ven by the skeleton of each pixel. The skeleton pixels for V(p) 
and H(p) sets are calculated only once per pixel. When pixel q
belongs to V(p), the corresponding horizontal arm H(q) is add-
ed to S(p). S(p) consists of the union of H(q) for all pixels q
which participate in V(p). [After Zhang et al., 2009.] 
 
The support region S(p) is expanded in the horizontal direction 
for each pixel q which belongs to the vertical direction of the 
skeleton (q є V(p)). This expansion is restrained by imposing 
two thresholds on spatial distance, one on image space and one 
in colour (RGB) space. The expansion length of each pixel q is 
defined only once for each pixel of the image when calculating 
H(p) and V(p). With respect to the disparity space image (DSI) 
representation, this corresponds to a two-step cost aggregation 
process. First, for pixel qi є V(p) all costs belonging to H(qi) are 
aggregated horizontally, and then all aggregated costs in pixels 
qi є V(p) are aggregated on the examined pixel p. Of course, 
this two-step cost aggregation can be carried out by first opera-
ting on the horizontal arm H(p), thus aggregating each V(qi), 
and then adding the costs along H(p) in p. However, implemen-
ting aggregation first in vertical arms or using the intersection 
of these two different processes have given results with no sub-
stantial differences. The determined cross-window can be based 
either solely on the left (reference) image or also generated on 
the right (matching) image. In this latter case of combined win-
dows, one employs the intersection of the two cross windows 

(S(p(x,y))∩S(p(x,y+d))). The results are expected to be more 
robust, since the projective distortions and radiometric differen-
ces between patches on the reference and the matching images 
are taken into account. As a result, the support region has a dif-
ferent shape for each possible disparity value (disparity label). 
 
Mei et al. (2011) have proposed two thresholds for colour simi-
larity and two for spatial closeness. In our approach, a linear 
threshold is imposed on window expansion (Eq. 7): 
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This linear threshold in colour similarity is a function of the va-
riables. These express: a) the maximum semi-dimension Lmax of 
the window size; and b) the maximum colour disimilarity τmax 
between pixels p and q (Fig. 5). This appears to produce slight-
ly better results in Middleburry datasets, but mainly it renders 
the two manually given input variables redundant, while at the 
same time thresholding of colour difference τ according to spa-
tial closeness lq from the skeleton becomes smoother. The diffe-
rence τ between successive pixels is also checked after Mei et 
al. (2011). Typical support regions generated according to the 
above considerations are presented in Fig. 6. 
 

 
Figure 5. Threshold τ(lq) imposed on colour difference between 
pixels p and q is linearly reduced (red curve) as q approaches 
the limit of maximum window size. The green lines depict the 
form of the two thresholds originally proposed in literature for 
handling extended texture-less image areas. 
 

Figure 6. Examples of the regions formed with the linear ap-
proach for the generation of cross-based windows. 
 
3.2 Aggregation step 
 
Aggregation is applied on cost-disparity volume using the com-
bined support region S. The aggregated pixel costs Caggr are nor-
malized by the number of pixels in the support region to ensure 
that costs per pixel have the same scale (Eq. 8): 
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We note that generally a [3×3] median filter is applied for cross-
skeleton determination. Moreover, the minimum length of all 
cross-segments is one pixel to ensure a minimum support region 
S of 9 pixels. The estimation of disparity is done in the ‘winner-
takes-all’ mode, i.e. by simply selecting the disparity label with 
the lowest cost. 
 
 

4. POST PROCESSING 
 
4.1 Scan-line Optimization 
 
In order to increase the effectiveness of the matching algorithm 
in low-texture areas, but also eliminate any possible ambiguities 
of the final disparity map, a scan-line optimization framework 
is adopted. The aggregated cost (from previous steps) for every 
pixel and possible disparities are updated with the sum of the 
minimum cost paths/directions leading to this pixel. This ‘semi-
global matching’ technique, introduced by Hirschmüller (2005), 
is also used by Mattoccia et al. (2007) and Mei et al. (2011) to 
optimize region-based aggregated costs. Final cost is obtained 
here by summing up the cost from the 4 dominant directions (2 
horizontal, 2 vertical) as proposed in the latter two publications. 
 
4.2 Constraints 
 
• Left-right consistency. Match consistency (cross-checking) 
between reference and matching images is a common reliable 
tool for evaluating the quality of disparity maps (Brown et al., 
2003; Banks, 2001). It is easy to implement in local stereo algo-
rithms (though computational load is doubled if ‘naively’ im-
plemented). A pixel p is characterized as valid (inlier) if the fol-
lowing constraint holds for the disparity maps Dmap of the re-
ference and matching images: 
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The left-right consistency check does not make any distinction 
among outliers of different origins, yet it performs well in eli-
minating erroneous depth estimates. 
 
• Ordering constraint is another consistency measure often met 
in literature, which explores the relative order of pixels on the 
same epipolar line and rests on the assumption of object surface 
continuity. Nevertheless, this is not always the case for real-life 
scenes; furthermore, in our experiments its results had nothing 
substantial to add to the left-right consistency checks.     
 
4.3 Occlusion/mismatch labeling 

In the preceding step outliers are located in the disparity map. 
These outliers may originate from different sources. Two main 
categories, however, are of special importance for developing 
an interpolation strategy: occlusions and mismatches. In Bobick 
& Intille (1999) and Brown et al. (2003) one may find effective 
approaches; however, a powerful technique is that proposed by 
Hirschmüller  (2008). A graph depicting the disparity line Dmatch 
of the matching image and the epipolar line of the reference 
image is created. Outliers are classified to either mismatches or 
occlusions based on whether the epipolar line of the reference 
image intersects the disparity line of the matching image. Sub-
sequently, mismatches within a neighbourhood of occlusions 
are also characterized as occlusions. 
 
For rejected pixels characterized as mismatches a new disparity 

value is given through median interpolation in a small neigh-
bourhood around them. Occluded pixels, on the other hand, are 
given the second lowest disparity value in their neighbourhood 
as their new disparity value. This common approach is based on 
the fact that occlusion pixels are most likely to share the same 
disparity value with their prevailing background. A 5-connected 
grid is proposed here, situated on the left side of the pixel oc-
cluded on the left image, as pixels close to edges in this image 
are most likely to have the same disparity with neighbouring pi-
xels on their left. However, an occluded area will be assigned a 
new disparity value only if this is smaller than the original dis-
parity value, since the latter is expected to originate from the 
background. 
 
The above procedure regarding mismatches and occlusions is 
iterative in order to gradually replace disparities of all outliers 
with more valid values, moving from boundaries to the centre 
of ‘disparity gaps’ in the map. It is noted that mismatches are 
corrected prior to occlusion-filling. In Fig. 7 an example for the 
improvement of matching results after this refining treatment of 
mismatches and occlusions is shown. 
 

Figure 7. Disparity map of the left Tsukuba image before (left)
and after (right) occlusions and mismatches have been handled.
 
4.4 Sub-pixel refinement 
 
Finally, a sub-pixel estimation is made by interpolating a 2nd or-
der curve to the cost volume C(d). This curve is defined by the 
disparities of the preceding and following pixels of the ‘winner-
takes-all’ solution and their corresponding cost values. Optimal 
sub-pixel disparity value d* is determined by the minimum cost 
position, through a closed form solution for the 3 curve points 
(d* = argmind(C(d)). An example illustrating the effect of the 
overall post-processing refinement is seen below (Fig. 8). 
 

Figure 8. Disparity map of the left Cone image before (left) and 
after (right) the overall refinement. 
 
 

5. CONCLUDING REMARKS 
 
In this contribution an implementation of a stereo-matching al-
gorithm has been presented, based on state-of-the-art matching 
approaches. Novel aspects include use of census on image gra-
dients of all colour channels in the cost function. Also, a linear 
threshold in the cross-window formulation has been adopted. 
Promising results have been presented. Further research will be 



focusing on issues such as improvement of the support region 
definition via image gradients; post-processing steps to improve 
our satisfactory initial cost in occluded areas; search for a self-
adaptive term for weighting the contribution of multiple costs; 
use of census on gradients in diagonal directions. It is also in-
tended to expand our approach by a hierarchical scheme in or-
der to accommodate high resolution (including aerial) images. 
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