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ABSTRACT:

Epipolar geometry of a stereopair can be expresgbér in 3D, as the relative orientation (i.ensiation and rotation) of two

bundles of optical rays in case of calibrated camer, in case of unclalibrated cameras, in 2hagobsition of the epipoles on the
image planes and a projective transformation thregisypoints in one image to corresponding epipolaslon the other. The typical
coplanarity equation describes the first case;Ainedamental matrix describes the second. It haskelen proven in the Computer
Vision literature that 2D epipolar geometry imposgs independent constraints on the parameteraroéca interior orientation. In

this contribution these constraints are expressexttty in 3D Euclidean space by imposing the eifyalf the dihedral angle of

epipolar planes defined by the optical axes ofttfecameras or by suitably chosen correspondingodgi lines. By means of these
constraints, new closed form algorithms are progdee the estimation of a variable or common canmnastant value given the
fundamental matrix and the principal point positafra stereopair.

1. INTRODUCTION

3D epipolar geometry of an image stereopair iscaipi descri-
bed by the coplanarity equation which requires afameters
for the normal pinhole camera model (i.e. when siess and
aspect ratio are not taken into consideration) séhare 6 para-
meters for interior orientation ¢x Yoi, C1, Xoz2, Yoz, C2) of two ca-
meras and 5 for their relative orientation (by, dz¢, «). In the
case of uncalibrated cameras, on the other hanépiivlar ge-
ometry is expressed by the Fundamental Matrix, kvtécde-
scribed by 7 independent parameters and allowsshimation
of the epipoles and the epipolar lines directlytlos two image
planes. The 2D representation of epipolar geonwtmesponds
to infinite 3D configurations which are known to ledated by a
3D projective transformation. However, these inér8D confi-
gurations are constrained. Compared to the 5 indkgetrpara-
meters of relative orientation, when the 6 pararsedé the ca-
mera interior orientations are considered to beakndhe 2 ad-
ditional degrees of freedom+% = 2) of the fundamental matrix
can be considered as constraints on the cameriomogienta-
tions. In the Computer Vision literature these craists are ex-
pressed in the projective space, as constrainth@immage of
the absolute conic, through the Kruppa equationayfdnk &
Faugeras, 1992; Hartley, 1997).

In the general cased images are required in order to fully cali-

brate a camera only from image point corresponderidew-
ever, if the principal point position is known thiéns possible
to estimate the camera constant from 2 images ebem it is
not common for their two cameras. This has beerstitgect of
several contributions in the field of Computer Visiovhere
closed form solutions have been proposed for thimmason of
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a variable or common camera constant value fromfuhda-
mental matrix assuming known principal point.

Hartley (1992) was the first who developed a ratteenplex al-
gorithm for the computation of a varying camerastant value.
Pan et al. (1995) derived & 8legree equation in the values of
c® Next, they presented a linear solution #nfar the cases of
identical and different camera constants (Newsaal.ef1996).
They also found two critical geometries which da allow the
computation of varying c¢ values from the fundamkenatrix:
when the optical axes are coplanar with the basghen one
optical axis is perpendicular to the plane defibgdthe other
axis and the base. An equivalent equation has pesented by
Bougnoux (1998) based on the solution of the Krupgaa-
tions, by Kanatani & Matsunaga (2000) based ontcaimés on
the Essential Matrix and by Huang et al. (20049tigh the ab-
solute dual quadric. Sturm (2001) and Sturm e24105) dealt
with the case of common camera constant and foteuil@ree
different equations (one linear and two quadrdtic)its deter-
mination. They also demonstrated that a commonchmeacal-
culated even when the camera axes are coplanangss they
are not parallel or their point of intersectionnist equidistant
from the two projection centres.

Hartley & Kaucic (2002) gave a new geometric intetgtion
on the determination of different c values for siereopair and
have studied the effect of a wrong assumption atfmuprinci-
pal point position. To address the sensitivity bfaggorithms
on the principal point position, Hartley & Silpa-am (2002)
propose a new non-linear algorithm for the estiomatf the
fundamental matrix that leads to more stable esiims. of the
camera constant. With the same goal Whitehead & Rafif2



and 2004) use the DHGiyhamic hill climbing) method, while
Kanatani et al. (2006) compute a new fundamentatixnfiom
fewer point correspondences.

Stewénius et al. (2005) dealt first with the siranfious estima-
tion of relative orientation and a single camerastant value
from 6 point correspondences through the theo@rébner ba-
ses, and found the existence of 15, real and iraagirsolu-
tions. A more straightforward solution was given lby(2006)
who proposed a 15degree polynomial using the hidden vari-
able method. Finally, Ronda & Valdés (2007) havemérad
the Kruppa equations in the case of a stereopdirlzased on a
projective geometry theorem of the French mathemiaatiPon-
celet, propose a parameterization of all possiblati®ns for
camera calibration.

In this contribution the constraints that the fumeéatal matrix
imposes on the interior orientation parametersdareved in 3D
Euclidean space. The epipoles, the projection cerged the
epipolar lines of the principal points allow theiestion, inde-
pendently on each image plane, of the dihedraleafigined by
the epipolar planes of the optical axes. The etyuafithe esti-
mation of this angle from the two images imposes gaome-
tric and algebraic constraint on the interior otaion parame-
ters. A second independent constraint is derived isimilar
way from the equality of the dihedral angle of #émpolar pla-
nes that correspond to two suitably chosen epipolas. By
means of these constraints four new closed formridtgns are
developed for the computation of a common and ktgiaame-
ra constant from the fundamental matrix assumingwknprin-
cipal point.

2. INTERIOR ORIENTATION CONSTRAINTS

2.1 Dihedral angle of the epipolar planesdefined by the
optical axes of a stereopair

The baseline and the optical axes of a stereagmigng as they
are not coplanar, define two epipolar planksandII: (Fig. 1).
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Figure 1. Epipolar plandds, I of the optical axes of the two
cameras define a dihedral anflle

Planell: intersects the two image planase: at epipolar lines
Ip1 andlpy’, andIl2 intersects them at linég' andlp2, respecti-
vely. These lines correspond to the epipolar liofehe two pri-
ncipal pointsps, p2 and can be estimated by joining principal
pointsps, p2 with the epipoles:, e

|p1:elxp1:{el]xpland|p2:ezxpzz[ez]po @)

where the notation:

al [0 -a 3
a =la, =|a 0 -a
% |-& a 0

is used to express the vector cross product apritauct of a
skew-symmetric matrix and a vector.

Thenlpy’ andlp2’ can be found from the fundamental matinf
the stereo pair as:
! ! T
Ipl:FplandeZZF P, 2
On planee: a new poinB1 can be constructed at the intersec-

tion of linelp2 and a new liné, perpendicular tdpa from prin-
cipal pointpi. It can be shown that:

I =[p,], Il =[P, i[el]X p, where| = 3)

o O
o - O

and therB1 is equal to:
Bl:l:)2><|:[FTpZL[pri[epr] (4)

Respectively, org2 point B2 can be constructed at the interse-
ction oflp1’ with the perpendicular gz from p2.

B, =[Fp,]. [p2]. I[e;]. P, (5)
In this way the right triangleBip:e1, B2p2e2 and the projection
centersO3, Oz form two orthogonal tetrahedi@:Bip:ier and
O2B2p2e2. The dihedral angles among their ed@ee: andO2e2
defined by their non-perpendicular faces (i.e.ghgles defined
by the plane®:eip1, O1e1B1 andO2exp2, O2e2B2, respectively)

are equal to the dihedral an@ef planedls, IT>.

Figure 2. Computation of the dihedral anglef the two
epipolar planes defined by the optical axes otwwecameras
(planesO1e1p1, O1e1B1 on the left image an@2zezp2, O262B2 on
the right).



This allows the formulation of two independent egpres for

the estimation of anglg from the fundamental matrix, the prin-

cipal pointsps, p2 and the camera constants & of the two
images. The equality of these equations gives awmngtric
constraint among the interior orientation parangetdrthe two
cameras and their fundamental matrix.

The position of the two image principal poipts p2, the epipo-
les e1, e2 and constructed poiniB:1 and Bz define on the two
image planes the following distances:

a = |pier], b= |piB1l, di= |Biet| ones (Figure 2, left) and
a=|pee2!|, bo=p:B2|, cb = | B2e2| onez (Figure 2, right).
The 3D homogenous coordinates of the verticestodhiedron
O:1Bipaer are simplified if a local coordinate system isesédd,
centered ap: with axes defined by lingser, p1B1 andp101. In
this systenp1=[0001]",B1=[0 b1 01]",e1=[aa 00 1]" and
0 1=[00 c 1]7. Subsequently, via these points, through
analytical computation of a plane passing througioiits, the
homogeneous representations of epipolar plahedIz> can be
estimated a¥I. = [0 1 0 0] andII> = [cib: &C1 abr —aucib1]”
and the cosine of their dihedral anflés found by equation:
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M, =[I1] [p,].T[e,] p, andN, =[1}] [p,] T, p,

(10)

Figure 3. Epipolar planddw, IIn defined by two randomly
selected epipolar linds, 1> define a dihedral angle

an

Two new tetrahedr®:NiMier and OzNzMze; are formed in
this way, and their dihedral angles along theiresdgue: and
O2e2 are both equal to the dihedral anglef planed Iy andIln

and, therefore, equal to each other.

Again through the construction of poirité:, N1 and M2, N2,
the two principal points and the epipoles, theolwlhg distan-
ces are defined on the two image planes:

In a similar way, planeHs, IT> can be independently expressed m; = |p1M1|, m = |p1N1|, s = IMiet|, ti = INwet| ones

through the corresponding points of the second énagnec:
(Figure 2, right) and the following second equationanglef
can be derived:

5)— 8,6, _ag
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However, the values of Eqg. 6 and Eq. 7 must belegnd so it
must hold that:

ac a6 @
Jag+c¢d &8+ éd

Eq. 8 expresses the equality of two dihedral anigl&D Eucli-
dean space and associates the interior orientpicameters of
a stereopair with those of its fundamental maffixis geome-
tric as well as algebraic constraint decreasesrig/the 6 de-
grees of freedom of the interior orientation of tive cameras.

2.2 Dihedral angle of two random epipolar planes

A second independent constraint can be expressedgih the
computation of the dihedral angle of any two addidil epipo-
lar planes that correspond to two randomly seleetgdolar li-
nesl1 andlz (Figure 3). Epipolar planddw, I~ are constructed
on the first image plane: through pointdM, N1, at the inter-

section of linedy, Iz, respectively, with a line perpendicular to presentation idIv =

Ip1 at principal poinpa.
M, =[] [p,], i[el]x p,andN, = [l zL [pl]x i[el}x P, )

The same planes are constructed on the second iptages:
through pointdMz, N2 at the intersection of lindg, |2/, with the
perpendicular tdy2 atp2.

(Figure 4, left) and o= [pMz |, re = [poN2 |, 9= IMee2], t2
= |Nze2| onez (Figure 4, right).

Figure 4. Computation of the dihedral angkefined by two
epipolar planes@.eiN1, O1e1M1 on the left image an®2e2Nz,
02e2M2 on the right).

The homogeneous 3D coordinates of the verticestrdltedron
O:iNiMaze: (in the coordinate system described in the previou
section) ar@d1=[00c1 11", N1=[0n 0 1], M1 =[0 m 0 1]7
ander = [a 0 0 1]7. It must be noted here that valuesand m
refer to distances signed according to the relgpiesition of
points N1 andMa with respect to principal poirgi. The same
holds also for distances,m in the following equations. Plane
Iv is defined through poind1, e1, M1 and its homogenous re-
[cxmy act aumi —aucimi]T. Respectively,
planeIln is defined byOs, e1, N1 and is represented by vector
Ix = [c11 &cC1 &t —acam]

Through these representationsIdfi andIlx it is possible to
estimate their dihedral angfe

cos(r) = ¢(a@+mn)+ dmn
Jost+ gg(nfer B9+ 4nfd

(11)



A second equation for angjecan be formulated if pland3m
andIlx are constructed through the respective pointderse-
cond image plane (Figure 4, right):

coS(Y)Z\/C (e mn)+ dmn (12)

2S6+ Ga( nE+ g+ 4 g

Thus the equality of Eq. 11 and Eq. 12 gives a rsgomn-
straint, additional to that of Eq. 8, among theapaeters of ca-
mera interior orientations and their fundamentatrixa
cl@+mn)+dmn g 8+ mg+ 2wy (13)
Joistrcd(nfer g+ dmg [ ¢3F th hr bR ab

Eqg. 13 can be simplified if pointd1, N1 are suitably selected

the two orthogonal tetrahed@upiMier and Ozp2M2e2 (Figure

3) the angles along the edg®ser and Oze2 should be equal.
This equality allows in a way similar to sectio2 20 formulate
only one constraint, of the simpler form:

ac  _ ag
Jami+¢g  Jdni+ é%

(16)

3. CAMERA CALIBRATION ALGORITHMS

As it was shown in the previous section, in theegahcase of
non-coplanar optical axes the fundamental matriposes two
independent constraints on the interior orientapanameters.
This is in accordance with the Computer Vision &tere, in
which these constraints are expressed in the pivgespace

on the image plane at positions with 2D homogenous coordi- through the Kruppa equations (Maybank & Fauger&92)

nates M1 = [Xotyo-y1 —XotXityo 1]7 and N1 = [Xo—Yoty1
xo—x1+yo 1] instead of selecting randomly two epipolar lihes

I2 and then construct poinM1, N1 as described above. These

points belong by definition to a line perpendicuiar,: at p1
and their signed distances to the principal poiategjual to m

Here the two independent constraints are expraasaid Eucli-
dean space through Eq. 8 and Eq. 13 or Eq. 15.

At least 3 images are required to fully calibrateaanera. The
parameters of their common interior orientation banestima-

=a and n = —a. Due to this property Eq. 11 takes the form of: ted through the simultaneous solution of all thestmints im-

(14)

=) 2ite

and thus the equality of angjeallows the formulation of the
following constraint:

—a c(&+mn)+dmn
20 +d  Jigt+ g nie+ B+ g

(15)

All distances referring to the second image plareeha&re again
signed and are estimated once epipolar life’ correspond-

posed by the fundamental matrices of all sterecspance the
distances in Eqg. 8 and Eq. 15 are expressed atdnsof the
principal point coordinates.

However, in the case of stereo pairs it is onlysfias to partial-
ly calibrate the cameras. Eqg. 8 and Eq. 15 carohved for any
2 out of the 6 interior orientation parameterstef two images
(Xo1, Yo, C1, Xo2, Yoz, C2) if the remaining 4 are known. Out of all
possible combinations, the computation of the cantenstant
from a stereo pair with known principal point isgrkater inte-
rest, since in most cases the latter can be assatrtbé center
of the image frame.

In that case, knowledge of the principal point posi on the

ing to pointsM1, N1 are computed via the fundamental matrix W0 image planes allows the estimation of all dises in Eq. 8

and pointdMz, Na.

It may seem at first that any additional epipolaelmay offer
further constraints in the form of Eq. 13. Suchstaaints, how-
ever, are not independent. Epipolar planes araelkfihrough
two bundles of epipolar lines which are in projeetcorrespon-
dence. As a consequence, the two families of aalirepipolar
planes are also related by a projective transfaomatnd hence
they retain cross ratio. Thus, if equality of thieediral angles of
three corresponding epipolar planes is guarantééexequality
will then hold for every additional epipolar plar@onsequently
only one constraint (Eq. 13 or Eq. 15) is independs Eq. 8.

As an alternative, two constraints in the form of E3 may be
considered independent but in this case the cansthEq. 8

is no longer independent.

2.3 Thecase of coplanar optical axes

In case the optical axes of the two cameras oé@atpair are

coplanar, then lineky, lp2 are epipolar lines in correspondence,

and thus the constraint of Eqg. 8 is no longer vallicte the epi-
polar planes of the optical axes coincide and thigwedral
angle cannot be defined. Additionally, Eq. 13 or Ef do not
only represent the equality of anglebetween planeFIm and
IIx but also the equality of the dihedral angles fatrbg ITm

andTIn with the common plane of the two optical axes.f&o

h1:ai

and Eqg. 15, which can then lead to the formulatibtwo equa-
tions, one linear and one of3legree on to the square of the
camera constant valuesiicc?). In the following four new al-
gorithms for partial camera calibration are progbdgmsed on
the solution of these equations.

3.1 Imageswith different camera constants

If the location of the two principal points is knowthen all di-
stances in sections 2.1 and 2.2 can be estimated éonse-
guence, the only remaining unknown variables in&Egnd Eq.
15 are the values of the two camera constanasd @. Solving

the square of Eq. 8 foi%yields equation:

L @ae
ldd-4d)dr 448

Then, substitution of Eq. 17 to Eq. 15 leads toftiwenulation
of the following 3% degree equation on%a= W>):

7

hlw?Z’ + h1W22+ h3W2+ h4: 0 (18)

where:

(#6+ 48] (4 my'~(ab 2¥( 2 W 2 ¥ (9



h—did| 4466 4+ ahde & m F|-( 2k s m )
—dd B 248 m+ o'~ Bab m K- dpinf
az—alaiti[m m- 0~ 4brb

The analytical solution of this polynomial givestfollowing
three solutions:

W __ adblab(n- m- 2bmy

*(@E-ad)(m- n)+ 2aby B my
[
)

(20)
W a@blab(n- m+ 2bmy
©(@B-ZH)(m- n)- 2aby B my

These are values that satisfy simultaneously tharseg of Eq. 8

hy=a|-g(m-n)+ 44 H 4+ 8amf & m)
——ad|d(m- n) - 41§

Besides the obvious invalid solution w0, Eq. 21 has up to
three different solutions which can be estimategaty from
the polynomial coefficientsihhe, hs and h. The common ca-
mera constant value can then be found from thersquat of
the real positive solutions of w. Eq. 21 is valiger in the case
of images with coplanar optical axes.

3.22 Non-coplanar optical axes

If the principal point location is known, it is pkle to deter-
mine whether the optical axes of the two imagesaptanar or
not. In the first case lineg: andlp2 that connect the principal
point and the epipoles on the two image planesldhmicorre-
sponding epipolar lines. Consequently, the two paicpoints

and Eq. 15 and correspond t8,@nd therefore should be posi- py, p, should satisfy the epipolar constraint:

tive. Thus the first solution can be directly disted since it is
negative. From the remaining two solutions only ¢he that is
positive and at the same time satisfies Eq. 8 apndLk (besides
their squares) is kept. The camera constant aséhend camera
c2 can be found from the square root of the validhestton of
w2, and then ccan be estimated from Eg. 17.

As it was previously mentioned, Eq. 8 is not validen the two
optical axes are coplanar. In such a case it isiplesto formu-
late only one constraint among the interior origataparame-
ters and the fundamental matrix. The coplanaritgmifcal axes
is, as a consequence, a critical geometry for ¢terchination of
two camera constants from a stereopair, a propleatywas first
found by Newsam et al. (1996).

3.2 Imageswith common camera constant

If it is known that the two images of a stereo paive a com-
mon camera constant, then its computation is plessien in
the case of coplanar optical axes from Eq. 15anfeither Eq.
8 or Eg. 16. In fact, Eq. 15 addresses the probitegeneral.
Conversely, the solution of Eq. 16 for a common canu®n-
stant is valid only if it is confirmed that the agatl axes are co-
planar, while Eq. 8 can only be used in the cag®afcoplanar
optical axes. In this way three different equatioan be formu-

p2Fp,=0 (23)
So if it is confirmed from Eq. 23 that the optieaies of the two
images are not coplanar, then the square of Egn&e solved
for the common value € c1 = ¢z of the camera constant. This
leads to the following linear solution:

b — b

A - d

C=a3 (24)

3.23 Coplanar optical axes

Conversely, when the optical axes are confirmedetadplanar
Eq. 16 can be used instead, for the computatiom @dmmon
camera constant:

m; —mj
as— 4§

It must be noted though that, as Sturm (2001) andSet al.
(2005) have pointed out, the computation of a comeeamera

c=aa (25)

lated, one of 8 degree and two linear on the square of the comggnstant is not possible in case the two camergiion cen-

mon camera constant value. It should be notedthizatiegrees
of the proposed equations are in accordance toribe sugge-
sted by Sturm (2001) and Sturm et al. (2005) whidh based
on the solution of the Kruppa equations throughySlar Value
Decomposition (SVD).

321 General Case

ters are equidistant from the intersection poirtheftwo optical
axes or when the optical axes are parallel.

4. TESTSAND EVALUATION

To evaluate the effectiveness of the proposed itgos tests
were performed with simulated data and the resudie com-

In more detail, if ¢= c2 = c, then the square of Eq. 15 gives thePared to similar closed form algorithms from Computésion

following 3 degree polynomial or¢¢= w):
W(th3 +hw?+ hw + h4) =0 (21)

where:

=4(&+ mn)
=4(&+mn) 28 mp+ g & my

(22)

literature. For the simulations, two stereo paiesenconstructed
from different perspective projections of a 3D gafidimen-
sions Z2x2 n¥, consisting of 27 points (Figure 5).

Image size was set at 10248 pixels, the principal point was
considered at the center of the image frame an@@aoonstant
was set atc= 800 pixels andz= 1000 pixels in the case of va-
riable camera constant algorithms and at 200 pixels for the
ones that estimate a common camera constant. Tata/eeori-
entations of the two stereo pairs correspond teraiit BH ra-



tios, and the second stereo pair is close to imargjeometry for

both algorithms, i.e. the optical axes are almagtlanar (the

dihedral angle of their epipolar planes is°]l.&nd the distance
of the two projection centers from the “ideal” pbof intersec-

tion of the optical axes differ only by

Figure 5. Example of simulated data.

4.1 Imageswith different camera constants

For the estimation of a varying camera constantrgbe two
frames three closed form algorithms were implentated test-
ed in the experiments:

The algorithm proposed in Section 3.1 which is Hase
on the equality of dihedral angles of epipolar pk&n
defined independently on both images

The algorithm of Newsam et al. (1996), which is ba-
sed on the algebraic properties of the essentiabma
The algorithm of Bougnoux (1998), which is based on
the solution of the Kruppa equations

An additional non-linear, self-calibrating bundidjistment so-
lution was also carried out without the use of calrpoints. For
initialization the results from the closed form @ighms were
used.

In order to check the sensitivity of the proposkbathms with
respect to errors in the measurement of correspgnithage
points, normally distributed random errors of vascstandard
deviationsoxy (from 0.1 up to 1 pixel) were added to the correct
image point coordinates. To further check the rigmlity of
the algorithms, 20 different solutions were perfedifor each
oxy level. From them a meanna) and a standard deviation
(cstd) were calculated for the estimated camera cons&oes.
The results of all solutions are presented in Fdur

In all experiments, the estimations of the camersstant values
from all mentioned closed form algorithn@H in the diagrams)
were identical, and at the same time very clogaédundle ad-
justment results. This is a confirmation that thgoathm pro-

posed here is equivalent to the ones from the te€emputer
Vision literature. The mean values of the camenstant esti-

creases with the leveky of image noise, and so does the uncer-
tainty of estimated camera constant values. Thevén worse

for the second stereo pair whose image configurasi@lose to
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Figure 6. Comparison of different algorithms for the
mations &eanare close to ground truth values with differences computation of two camera constant values fromginmlated
less than %. However, it is clear from the standard deviation configurations (configuration 1 above, configurat® below)
diagrams &qd that the spread of solutions around their mean in- at different noise levels. Mean values and standawiations
are given from 20 solutions per noise level.



4.2

Images with common camer a constant
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Figure 7. Comparison of different algorithms for the
computation of a common camera constant value fraom
simulated configurations (the same as in Figurat @ifferent
noise levels. Mean values and standard deviatigngigen

from 20 solutions per noise level.

For the estimation of a common camera constargdhe expe-
riment was repeated, but this time image coordméde all si-
mulations were estimated with a single camera eongt= c2=
900 pixels. The 6 different methods implemented tested are:

= The algorithm of Newsam et al. (1996) for commomesa
constant, which is based on the algebraic propedfethe
essential matrixNewsam et al)

= The algorithm of Sturm (2001), which is based oa sblu-
tion of the Kruppa equations through SVD decompasit
(Sturm)

= The algorithm of Bougnoux (1998), where the comman ¢
mera constant is estimated by the mean of the dliges ¢
and @ computed by the algorithnBéugnoux)

= The algorithm proposed in section 3.2.1, whichasda on
the equality of the dihedral angle of two suitabihypsen epi-
polar planes defined independently on the two imazgaes
(Alg. 3.2.1)

= The linear algorithm proposed in section 3.2.2,chtis ba-
sed on the equality of the dihedral angle of thipa@pr pla-
nes of the optical axeslg. 3.2.2)

= A non-linear bundle adjustment solution without tohpo-
ints Bundle)

The results of all solutions are presented in Fgur

It is clear that the estimation of a common valoethe camera
constant of the two cameras is less stable, arsbine cases
their mean value does not converge to the grount solution,
especially when image noise gets higher than xBlgi The
estimations from bundle adjustment are, in genenake con-
centrated around their mean and closer to grouwnt than the
closed form solutions. A comparison of the fiveseld form al-
gorithms shows that those of Newsam et al. (199@) Sturm
(2001) give equivalent results, which are very eltasthe mean
of the two camera constant estimations of Bougndg998). At
the same time the algorithms proposed in this dmution give
results which are closer to those from the bundjestment and
the ground truth, even in the near-critical confagion of the
second stereopair.

5. CONCLUDING REMARKS

2D epipolar geometry, as expressed by the Fundaitridiatrix,

imposes 2 independent constraints on the inteni@ntation

parameters of the two cameras of a stereo paithefComputer
Vision literature these are typically formulated pmojective
space, as constraints on the image of the absotutie, or as
algebraic constraints on the Essential Matrix.His tontribu-
tion a new formulation of these constraints is sgd in 3D
Euclidean space. The main concept is that the iposdf the
principal point and the camera constant togethéh thie epi-
poles allow defining independently on the two imadpnes fa-
milies of epipolar planes which must have commomedial

angles. Through these constraints new closed fdgarithms

are proposed for the estimation of a variable onroon camera
constant from the Fundamental Matrix and the ppalcpoint

position of a stereo pair. Experimental resultsehakiown the
effectiveness of the proposed algorithms.
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