
 

 

 

Abstract 

 

Stereo-matching is an indispensable process of dense 3D 
information extraction for a wide range of applications. 
Relevant methods rely on cost functions and optimization 
algorithms for estimating accurate disparities. This work 
analyses a novel cost for stereo matching under radiometric 
differences in the stereo-pair, which is based on a modifi-
cation of the widely used census transformation. It is pro-
posed to define the census on image x and y gradients. The 
modified census (MC) on gradients is evaluated as an 
independent matching cost in the presence of severe radio-
metric differences. For this, the original and the modified 
census transformation (CT) are implemented in three dif-
ferent aggregation schemes, namely fixed rectangular 
windows, adaptive cross-based support regions and semi-
global matching. It is shown that the MC can provide better 
results in the cases of local radiometric differences, such as 
different illumination conditions. Thus, this approach can 
extend the inherent capability of the original CT to address 
global monotonic radiometric differences. 
 

1. Introduction 

Dense 3D information represents an indispensable co-
mponent in several computer vision and photogrammetric 
tasks (e.g. 3D reconstruction, DSM production, novel view 
synthesis, autonomous navigation, object detection). In 
terms of accuracy, cost and flexibility, image-based (pas-
sive) approaches for acquiring 3D data appear today as 
competitive to active ones (laser or optical scanners). 
Among the former, image matching, i.e. automatic determi-
nation of pixel correspondences among images, remains 
fundamental in both its main variations: sparse matching for 
camera calibration/orientation/rough surface reconstruction; 
and dense matching for full 3D surface reconstruction. 
Stereo-matching algorithms, as that presented here, usually 
rely on the epipolar constraint, thus typically operating on 
rectified images to produce a dense disparity map.  

Existing and emerging application fields have guided the 
research interest towards a significant number of proposed 
stereo-matching approaches. Their effectiveness has been 

extensively discussed in several surveys [1]–[4]. Scharstein 
and Szeliski [3] have categorized algorithms according to 
four fundamental components: matching cost computation, 
support aggregation, disparity optimization and disparity 
refinement. In [5], [6] the issue of support region formation 
has been addressed, while [7], [8] provide surveys focusing 
on criteria for hardware implementation and real-time per-
formance. Two most commonly used on-line platforms for 
benchmarking stereo-matching algorithms are that of Mid-
dlebury College [9] and the Karlsruhe Institute of Techno-
logy (KITTI) with its dataset for autonomous driving [10]. 

In matching function computation a similarity/dissimila-
rity measure is computed at each pixel for all values of po-
tential disparity. A wide spectrum of such matching metrics 
have been proposed, some of which have been evaluated in 
[11] under various optimization algorithms. Most common 
matching measures are the absolute or the squared intensity 
difference, the normalized cross correlation, or those based 
on filtered images, e.g. by median, mean or bilateral filter-
ing [12]. The Birchfield-Tomasi dissimilarity measure [12] 
copes with differences in image sampling; more recently, 
the mutual information cost [13] has been proposed for ef-
fectively handling radiometric differences. Pixel-wise des-
criptor measures like DAISY [14] and SIFT variations [15], 
on the other hand, have yielded promising results in global 
formulations for wide-based stereo. 

 During the last decade, the census transformation (CT) 
[16] has become increasingly popular as the core in dense 
matching functions; modifications have also been proposed 
for optimizing its performance. The original matching cost 
has been evaluated on different colour spaces for a typical 
rectangular-window-based cost aggregation [17]; no consi-
derable improvement of disparity maps for colour spaces 
other than RGB was found. The modified census transfor-
mation (MCT) approach [18] compares each pixel intensity 
against the average intensity in a neighbourhood rather than 
the intensity of the central pixel; following this, [19] have 
suggested, in the context of optical flow, the application of 
MCT on bidirectional gradient images using Sobel filtering. 
The two latter works also propose the computation of CT 
on a sparse neighbourhood for speeding up the results with 
small loss in quality. Another variation is cross comparison 
census (CCC) [20], which takes into consideration not the 
binary relations among a pixel and its neighbours but the 
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relations among each pixel in the defined neighbourhood 
and its four adjacent pixels in a clockwise direction.  

Matching cost on census transformation (as well as some 
of the costs referred to above) has been combined with se-
veral other costs. In [21] census cost (CCI) is combined 
with absolute difference on colour (CADC) to produce top-
scoring results on the Middlebury benchmark. In [22] the 
original census transformation was extended through its 
application on image gradients (CG); the total cost was 
found by combining costs CCG and CADC with the 
absolute difference on gradients CADG and proved to be 
efficient for sub-pixel accuracy on the Middlebury 
benchmark and a variety of different scenarios. More 
recently [23], the results of [22] were improved in the 
vicinity of edges by the addition of a cost component based 
on Weber’s law. Finally, a combination of CCI, or CCCC, 
with the mean sum of relative differences of intensities 
inside a window has been proposed for handling 
radiometric differences of the KITTI stereo-dataset [20]. 

This work evaluates a novel matching cost for the pur-
poses of stereo matching, which is a modification of the wi-
dely used census transformation (CT). It is proposed to de-
fine the modified census (MC) on image x and y gradients, 
as in [22], but, going beyond this, MC is evaluated as an 
independent matching cost in the presence of severe radio-
metric differences. In the past, image gradients have been 
used for matching, although in very different contexts ([24], 
[25]). The Middlebury 2006 dataset was selected for the 
evaluation, since it is composed of 21 stereo pairs with three 
different illumination and three different exposure settings. 
The MC is compared against CT using three different 
optimization schemes, namely fixed rectangular windows, 
adaptive cross-based support regions and semi-global mat-
ching. All matching schemes, i.e. the combinations of cost 
functions and optimization methods, were carefully tuned 
through a grid search, and results obtained using the opti-
mum parameters are reported. It is shown that the MC can 
provide significantly better results in the cases of local 
radiometric differences, such as different illumination con-
ditions. Thus, this approach can extend the inherent capabi-
lity of the original CT to address global monotonic radio-
metric differences, e.g. exposure changes. 

In Section 2 the modified census is described; the opti-
mization methods are presented in Section 3; in Section 4 
the dataset is described; Section 5 presents are evaluates the 
results, followed by the conclusions in Section 6. 

2. Census transformation on image gradients 

 In this contribution, the modified census transformation 
(MC) is defined; the gradient of each pixel p in i direction 
is compared to the gradient of its neighbour q in a rectan-
gular neighbourhood Np: 
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A binary vector is then formed from the concatenation of 
the above results, which maps the neighbours with weaker 
i-gradients. A final vector TMC is formed from the conca-
tenation of the two vectors which correspond to the x and y 
directions of the gradient:  
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Symbol  denotes the act of concatenation, following the 
initial definition of the census non-parametric transforma-
tion [16]. The typical census transformation TC is defined 
on the image intensity function I, whereas here its definition 
separately on the two gradients in x and y directions is 
proposed. Hence, the modified census transformation TMC 
provides a binary vector of doubled length. 

The matching cost C between a pixel p(x,y) of the refe-
rence image (ref) and its corresponding pixel p(x-d,y) in the 
matching image (mat) is the Hamming distance, which is 
the number of unequal elements in the two binary vectors: 
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The relation of pixel p to its neighbour q, which belongs 

to neighbourhood Np, is arbitrarily altered if a local change, 
like illumination, is applied on the image. In Figure 1 such 
an instance is presented. The first row displays a detail of 
the Bowling1 stereo-pair (see Section 4). The left image 
refers to default illumination and exposure settings, where-
as the right image is the result of a different illumination 
setting (i.e. mode 3). The blue cross pinpoints the correct 
pixel correspondence, while the red cross indicates the 
wrong match obtained by typical census TC. In the second 
row, the intensities in the neighbourhood of p on the left 
image, of its corresponding pixel p on the right image and 
of the wrong match are illustrated. The intensity values of 
each pixel are noted on these image patches. The third row 
presents the corresponding TC patches. It is seen that local 
illumination changes have disturbed the relation between 
the central pixel p (seen in grey) and its neighbours. As a 
consequence, the binary vector of the census transformation 
is significantly different, and the matching cost is higher at 
the true disparity position dtrue than at the wrongly estimated 
position dest. The respective x-gradients are illustrated on 
the fourth row, the TMC results are shown on the fifth. 
Although the relation of the actual pixel p intensity to its 
neighbours’ has changed, the relation of the gradient at p to 
its neighbouring gradients has been kept almost unaltered. 



 

 

Furthermore, x-gradients around the false estimation dest are 
very different, thus matching cost is high. Similar results 
are illustrated in the last two rows which refer to the y-
gradients. The cyan boxes mark a pair of pixels p and q and 
the values of census in each case. Orange boxes indicate a 
pixel whose transformation leads to erroneous results both 
on intensity field and y-gradient, but not on x-gradient; thus, 
the final TMC absorbs the error in the y-gradient, and the 
estimated match is correct.   

In more general terms, the modified census is computed 
on gradients, which are more stable against changes in illu-
mination. The original census depends on the relation of the 
p intensity to its neighbour’s q intensity; in the modified 
census this relation is “filtered” by the gradient, i.e. the 
relation of p and q to their own immediate neighbours. This 
relation is more resistant to change than the relation of the 
p and q intensities themselves. Hence, a change in position 
of a lighting source modifies intensities, but normally it is 
not expected to simultaneously produce a substantial 
change of gradients in both the x and y directions. The 
original census transformation depends on how a pixel 
relates to its surroundings within the image patch; thus, it 
can handle radiometric distortions that do not disturb the 
ordering of intensity values. The proposed modified census, 
on the other hand, is robust not only in the presence of linear 
(or monotonic) changes, but also against illumination chan-
ges which are non-modelled local changes. 

3. Aggregation/optimization algorithms 

Matching cost computed pixel-wise appears as a rather 
weak option for allowing accurate estimation of a disparity 
map. Hence, in local methods the cost of assigning a dis-
parity value to each pixel is supported by a suitably selected 
region around it during the cost aggregation step. Three 
main approaches are available for addressing this issue: use 
of support weights; arbitrary window shapes; variations of 
rectangular windows. A review of aggregation methods for 
the purposes of real-time stereo matching is found in [5]. A 
more thorough evaluation of both performance and accu-
racy for the most important aggregation methods has been 
conducted in [6]. A global approach, on the other hand, per-
forms disparity optimization on an energy function defined 
over all image pixels by simultaneously posing a smooth-
ness constraint; the most important techniques are based on 
partial differential equations [26] and graph-cuts [27]. Be-
tween local and global methods a class of algorithms have 
been derived for semi-global matching [13]. In this contri-
bution, the raw (pixel-wise) cost and three representative 
aggregation (or optimization) methods are used, in order to 
illustrate the efficiency of the modified census-on-gradients 
matching cost against the typical census transformation on 
the intensity field. 

 
Figure 1: Pixel neighbourhood Np under transformations TC and 
TMC. First row: a detail of the Bowling1 stereo-pair; left: image 
with default radiometry; right: image of illumination mode 3. The 
blue cross is the correct correspondence, while the red cross 
indicates the wrong match obtained by typical census TC. Second 
row: the intensities within neighbourhoods of p, p and of the 
wrong match. Third row: corresponding TC patches. Fourth row: 
x-gradients as 2nd row. Fifth row: TMC results. Rows 6 and 7 refer 
to the y-gradient. 
 



 

 

3.1. Rectangular windows 

The first aggregation method tested in conjunction with 
census transformation variations uses a typical fixed-sized 
rectangular window. The aggregation of pixel-wise costs C 
was implemented in typical rectangular windows of con-
stant size LN in both directions: 
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Although this is a ‘naïve’ matching algorithm, it can still 

be useful in some applications thanks to its computational 
efficiency.  

3.2. Hierarchical cross-based regions 

 Cross-based aggregation [28] is a highly adaptive me-
thod which intuitively implements the assumption that pi-
xels q in a support region Np ought to have similar colours, 
and is based on decreasing spatial coherence by expanding 
the arms of a cross around each pixel p. Hierarchical cross- 
based aggregation, as proposed in [22], is a modification of 
the initial method and was proved efficient in accuracy and 
computation loads for large scale images.  

The four cross segments of a cross-based support region 
are expanded for length l around each pixel p, thus defining 
two pixel sets H(p) and V(p) in the horizontal and vertical 
directions, respectively, restrained by the threshold τ [22]: 
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This threshold is controlled by the two parameters τmax and 
Lmax defining the maximum colour dissimilarity and spatial 
distance, respectively. Neighbours of pixel p are all pixels 
q belonging to V(p) plus those which belong to each cor-
responding set H(q). The combined support region of the 
two cross windows (N(p(x,y))∩N(p(x-d,y))) formed on the 
two images of the stereo-pair is used, in order to 
accommodate the local projective distortions and 
radiometric differences. Thus, support region N(p,d) is dif-
ferently shaped for each possible disparity value. The final 
cost Ct is normalized by the size of N(p,d): 
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The support neighbourhood of each pixel per each dis-
parity is formed in every scale s of the hierarchical scheme. 
Simultaneously, it defines the range of potential disparities 
for p, since it is accepted that each q member of N(p,d) can 
adequately define the disparity range of p via its approxi-
mate disparity dq

(s−1) computed in the coarser layer: 
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3.3. Semi-global matching 

The semi-global matching (SGM) algorithm has been in-
troduced [13] in order to compensate for the high compu-
tational load of global optimization methods and provide a 
robust optimization scheme. This is achieved by splitting 
the global 2D energy function E of the disparity map D into 
several 1D approximate equivalents in the directions of L 
paths throughout the image. Typically, the energy function 
in (8) consists of a pixel-wise data term C(p,D(p)) and a 
smoothness term regarding the neighbourhood Np of a pixel 
p(x,y):  
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The smoothness term adds cost penalties P1 or P2 when 

the disparity of a neighbour q differs from the disparity of 
p. Penalty P1 is enforced if the disparity change is low, i.e. 
up to 1 pixel, whereas larger change (depth discontinuities) 
is penalized via the P2 cost. The 1D energy function is com-
puted by following 1D paths L in several directions r along 
the image:  
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In detail, the partial cost Lr(p,d) for a pixel p and x-disparity 
d is calculated as the combination of  three terms. The first 
is the pixel-wise matching cost C(p,d). Next is the mini-
mum cost from the path to the preceding pixel (p-r) for the 
same d value, the previous one (d-1), the next one (d+1), or 
over the range i of disparities, including penalties P1, P2. 
Finally, the minimum path cost of the previous pixel is sub-
tracted, in order to ensure low summation values. The par-
tial costs from all paths Lr are accumulated to each pixel 
over all possible disparities, forming the final cost Ct in the 
representation of the disparity space image:  

  

   tC ,d = L ,d r
r
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The disparity map D is calculated from the optimal pixel 

disparity, selected by a simple winner-takes-all decision on 
Ct: 
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A class of SGM based algorithms has been developed. Here, 
a variation of the algorithm has been implemented, which 
uses a function for adjusting the P2 cost penalty, based on 
the image I intensity differences of pixel p with its preced-
ing pixel q in direction r [29]:  
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with w being a weighting parameter and P2i the initial 
penalty value. Finally, the 1D optimization is performed for 
8 paths, i.e. the four principal and the four diagonal 
directions.  

4. Dataset 

Experiments have been carried out on the Middlebury 
College stereo datasets. The standard dataset comprises the 
four well-known stereo pairs used for online evaluation, but 
the 2005 and 2006 datasets are more challenging since they 
include more real-life scenarios; besides, matching algo-
rithms have not been ‘over-adapted’ to them. Both datasets 
have been created under a variety of controlled radiometric 
differences; here the 2006 datasets are addressed since they 
include a relatively large set stereo pairs, i.e. of 21 scenes 
(http://vision.middlebury.edu/stereo/data/scenes2006/). 

Resolution is ~1.5 megapixels, yet the 1/3 sized versions 
are used here. The 2006 stereo dataset of Middlebury Col-
lege is in fact unexploited, probably due to its complexity 
and lack of on-line evaluation platform. It comprises indoor 
scenes that involve a range of predefined radiometric diffe-
rences. Each scene has been recorded from 7 viewpoints 
with three different illuminations and three different expo-
sures. The stereo-pairs are formed here using views 1 and 5, 
since true disparity maps are provided only for these views; 
this results in a total of 18 stereo-pairs for each scene, i.e. 9 
with constant illumination and combinations of exposures, 
9 with constant exposure and combinations of illuminations. 
In Figure 2 the radiometric differences for the Bowling1 
scene are illustrated. Changes in illumination can be seen as 
local changes, since they are caused by changes in position 
of the lighting source, whereas exposure changes may be 
seen as global changes, which approximate a linear change 
in intensities. It is noticed that when the exposure is set to 0 
several under-exposed (zero-valued) pixels exist in the 
images. 

To our knowledge, this dataset has not been exploited, as 
a whole, in evaluations considering illumination and expo-
sure changes. Although it is also limited to indoor scenes, 
i.e. it is not adequately representative of outdoor real-world 

scenes, it is far more challenging (complex scene geome-
tries, limited texture) than the widely used on-line Middle-
bury datasets. Hence, results are expected to be valid and 
more helpful for designing multi-purpose algorithms for 
real-life applications. 

 
Figure 2: Radiometric differences illustrated for the Bowling1
stereo pair. Top:  the three rows show different variations of the 
left image; the different exposures are from left to right; the 
illumination changes are from top to bottom. The next two rows 
are the histograms of the different exposures under illumination 1 
and of the illumination changes under exposure +2. Bottom: the 
relation of intensities between the left and right image for 
different exposures {0,+1} (left figure) and different illumination 
modes {1,2} (right figure). 



 

 

5. Evaluation 

5.1. Tuning of parameters 

As mentioned above, the Middlebury College 2006 ste-
reo dataset, which has radiometric changes in illumination 
and exposure settings, was used for evaluation. The mean 
error of the estimated disparities of the non-occluded pixels 
over all 21 stereo-pairs served as the evaluating criterion. 
This measure expresses in % the number of pixels whose 
disparities differ by >1 pixel from the true values. The error 
is estimated on the disparity map of the left image with no 
further refinements and constraints (e.g. uniqueness con-
straint, cross-checking). All parameters of the matching al-
gorithms were first tuned through a grid search. Tuning in-
cluded all combinations of the MC and CT matching costs 
and all aggregation strategies, namely rectangular windows 
(RW), cross-based regions (CB) and semi-global matching 
(SGM). Tuning was performed only on the default exposure 
setting and illumination condition. The optimal parameters 
were used for evaluating each matching scenario under 
radiometric differences. Tuning was performed in the 
following range of values for the parameters: CB {L, t, k} 
= {10…55, step 5; 5…30, step 5; 7…15, step 2}; RW {L, t, 
k} = {10…55, step 5; 5…30, step 5; 7…15, step 2}; SGM 
{L, t, k} = {10…55, step 5; 5…30, step 5; 7…15, step 2}. 
In the above, parameter k denotes the length of the census 
neighbourhood. The results of tuning are seen in Table 1. 

         
Table 1: Optimum parameters for matching 
algorithms 

 CB RW  SMG 

 

C
G

 

C
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C
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C
I  

C
G

 

C
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k   9   9 13 11 k 9 9 
L 40 30 13 15 P1 35 35 

τmax 10 10   P2 350 250 
     w 6 6 

5.2. Results 

Figure 3 shows the comparison of the proposed MC and 
the CT matching costs. It illustrates the disparity errors with 
respect to the combinations of illumination settings of the 
left and right image under the default +2 exposure. The top 
graph refers to the fixed rectangular windows; the middle 
graph to the hierarchical cross-based approach; the bottom 
graph to semi-global matching. It is established that MC 
yields by far more accurate results than CT in the presence 
of illumination differences. For the CB aggregation this dif-
ference is up to 10%. In cases where both images of the pair 
are under the same illumination conditions, the differences 
are insignificant and in cases of SGM CT is better by ~1.5%. 
Overall, CB algorithm using MC cost yields the best results 
with or without illumination differences. The comparison 

of the proposed MC and the CT matching costs for combi-
nations of different exposures under the same illumination 
mode 1 is seen in Figure 4. The graph refers to the rectan-
gular windows aggregation. It may be noticed that CT 
performs slightly better than MC. As mentioned, diffe-
rences in exposure are global nearly-linear changes, and the 
original census can already address differences that do not 
modify the relative order of intensities (monotonic global 
change). Hence, MC cannot add any value to the original 
definition in such cases. The results regarding exposure 
differences are similar for all three aggregation methods. 
Overall, CT relies on the sign of intensity differences 
between a central pixel to its neighbours, whereas MC also 
addresses illumination differences in matching, as it relies 
on the sign of the differences of the intensity differences of 
pixels from their immediate vicinity. On the other hand, the 

 

 

 
Figure 3: Comparison of the proposed MC (orange) and CT (blue) 
matching costs for combinations of different illumination 
settings. Top: fixed rectangular windows; middle: hierarchical 
cross-based; bottom: semi-global matching. 
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use of gradients may admittedly introduce a certain amount 
of noise; thus MC performs slightly worse in the cases of 
no illumination differences, or only exposure changes, 
which are inherently addressed by CT. 

As an example, finally, the estimated disparity maps for 
three stereo pairs (Bowling1, Wood2, Flowerpots) are seen 
in Figure 5. The results of the MC and CT matching costs 
are shown for all implemented aggregation methods. The 
disparity maps refer here to the optimal parameter settings 
for each case and illumination mode 1 for the left image 

matched to illumination mode 3 of the right image. It is no-
ticed that the improvement of matching results is clearer in 
areas with shadows in images (e.g. Bowling1). Shadows are 
a basic effect of changing the illumination settings of a 
scene. Moreover, surfaces of high relief, as that in the case 
of Flowerpots, show great differences in image texture be-
tween the images of the stereo, thus resulting in erroneous 
disparity estimation when CT is used; in this case, MC has 
showed considerable robustness. 

6. Conclusion 

In this contribution a modified census transformation, 
which is defined on image gradients, was presented and 
evaluated under radiometric differences in indoor scenes 
for the purposes of stereo matching. It was shown that, 
when compared to the typical census transformation, it is 
more efficient in coping with significant illumination 
differences. Hence, the typical census transformation may 
be further enhanced, since it is robust against monotonic 
changes in intensities but not when facing local changes in 
illumination. On the other hand, exposure changes are 
nearly linear; the census transformation is inherently robust 
to this type of changes, thus no significant differences 
occurred under exposure changes. As a future task, the 

 
Figure 5: The left and right image (view1, view5) of the stereo pair, rectangular windows, hierarchical cross-based regions, SGM. Default 
exposure +2, left image illumination condition 1 and right image illumination condition 3. The first column of each dataset is census on 
gradients and the second the typical census on intensity. The stereo pairs are Bowling1, Wood2 and Flowerpots. 
 

 
Figure 4: Comparison of the proposed MC (orange) and CT (blue) 
matching costs for combinations of different exposures and 
default illumination setting 1. 
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proposed modified census should be evaluated on the 
KITTI dataset for autonomous driving, since this presents 
radiometric differences within stereo pairs of real-life out-
door scenes. 
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