previous    up   next

How to Read a Confusion Matrix?


Let us consider the following confusion matrix:

$\mbox{\ }$ Class observed $\mbox{\ }$
Class expected 1 2 3 4 5 6 7 8 9 Unclassified
1 99.78 - - - - 0.22 - - - -
2 3.92 96.08 - - - - - - - -
3 - - 96.73 3.27 - - - - - -
4 - - 0.51 94.12 5.37 - - - - -
5 - - - 20.48 79.52 - - - - -
6 8.50 - - - - 91.50 - - - -
7 - - 0.65 0.22 - - 97.60 1.53 - -
8 - - - - - - - 100.00 - -
9 - - - - - - - - 100.00 -


 If we consider the first line, we get:

Class expected 1 2 3 4 5 6 7 8 9 Unclassified
1 99.78 - - - - 0.22 - - - -


After classification of the pixels of the image, we expect that all the pixels which belong to class 1 have been classified in class 1. But we observe that:

The sum of the observations of each line of the matrix is equal to 100% . Here, for the line considered, we have 99.78+ 0.22= 100.



 Consider now the 2 following lines:

$\mbox{\ }$ Class observed $\mbox{\ }$
Class expected 1 2 3 4 5 6 7 8 9 Unclassified
7 - - 0.65 0.22 - - 97.60 1.53 - -
9 - - - - - - - - 100.00 -

After classification, we observe that :


      previous    up   next     
  
 IRIT-UPS