previous    up   next

Expectation


1.
The expectation (alias mean value, average) of a random variable X is defined as


\begin{displaymath}E[X] = \overline{X} = \sum_{x} P_X(x) \cdot x\end{displaymath}


Example: $E[X] = 1/2 \cdot 0 + 1/2 \cdot 1 = 1/2$

2.
The expectation of a function F=F(X) is defined as

\begin{displaymath}E[F(X)]= \overline{F(X)} = \sum_{x} P_X(x) \cdot F(x)\end{displaymath}

Example: if $ F(X) = \sqrt{P_X(X)} $, we get

\begin{displaymath}E[F(X)] = \overline{F(X)} = 1/2 \cdot \sqrt{1/2} + 1/2 \cdot \sqrt{1/2}\end{displaymath}


      previous    up   next     
  
 IRIT-UPS