previous    up   next

Parameters


The use of a Bayesian classifier implies that we know:

 A priori probability P(Cl)



 Conditional probability $p(\omega / C_l)$

\begin{displaymath}p(\omega_1,\omega_2 / C_l) = p(\omega_1 / C_l) \cdot p(\omega_2 / C_l)\end{displaymath}
(8)


\begin{displaymath}p(\omega / C_l) = \prod_{i=1}^n p_{A_i}(\omega / C_l)\end{displaymath}
(9)


 Bayesian decision rule

\begin{displaymath}p(C_l / \omega) = \max_{j=1}^p \left(\frac{P(C_j) \cdot \prod_{i=1}^n p_{A_i}(\omega / C_j)}{p(\omega)}\right)\end{displaymath}
(10)




      previous    up   next     
  
 IRIT-UPS