previous    up   next

Definition of a Fuzzy (Sub)Set


A crisp subset A of $\Omega$ is defined by a characteristic function $\chi_a$ which takes a value 0 for the elements of $\Omega$ which do not belong to A and a value 1 for those which do belong to A:


$\displaystyle \chi_A(x)$  :  $\displaystyle \Omega \longrightarrow \{0,1\}$  
(14)
$\displaystyle \chi_A(x)$=  $\displaystyle \left\{\begin{array}{l}0 \text{ if } x \notin A \\1 \text{ if } x \in A\end{array}\right.$
(15)


A fuzzy subset A of $\Omega$ is defined by a membership function   which associates to each element x of $\Omega$, the $\mu_a(x)$ degree (between 0 and 1) to which x belongs to A:

\begin{displaymath}\mu_A(x) : \Omega \longrightarrow [0,1]\end{displaymath}
(16)


In the particular case where $\mu_a$ takes only values equal to 0 or 1, the fuzzy subset A is a crisp subset of $\Omega$. A crisp subset is thus a particular case of fuzzy subset.

To represent the fuzzy subset A, we often use a notation indicating, for any element x of $\Omega$, its degree $\mu_a(x)$ of membership to A:


   A $\displaystyle \sum_{x \in \Omega} \frac{\mu_A(x)}{x} \quad \text{if } \Omega\text{ is finite,}$     
(17)
 A $\displaystyle \int \frac{\mu_A(x)}{x} dx \quad \text{if } \Omega\text{ is infinite.}$


(18)

      previous    up   next     
  
 IRIT-UPS