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Abstract

The classification of sets of mixed pixels can be accomplished by making use of the
relationship of higher order moments of the distributions of the pure and mixed
classes. As a consequence, the number of equations relating the means of the dis-
tributions can be augmented, providing a number of linear equations larger than
the number of available sensor bands. Thus, the important advantage the method
offers and makes it unique is the fact that more classes than available bands can
be identified. The capabilities and limitations of the method are assessed first by
the use of simulated data that closely imitate real data, and also by real data from
Landsat images.
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1 Introduction

Recently, remote multispectral data collection and automatic processing tech-
niques have been proven to be very useful tools for many applications in the
field of Earth surveys. For certain applications however, limits in the spatial
resolution of satellite sensors and variation in ground surface cover, restrict
the usefulness of the remotely sensed multispectral data resulting in the pres-
ence of mixed pixels. In this case, the observed spectral signature of pixels is
the result of the reflecting properties of a number of surface materials consti-
tuting the area of the pixel. There are three main approaches that have been
developed to deal with the pixel classification problem: Calculation of indices
[6],[12],[8], Statistical methods of image classification [7], [5] and Spectral miz-
ture analysis. The first two methods result in the production of large thematic
maps which can often be poor representation of reality. Therefore, a spectral
mixture analysis approach is usually followed, which attempts to model how
the area on the ground which corresponds to each pixel is divided up among
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different cover types given the multispectral observations. Among various mix-
ing models, the linear mixing model has been most commonly used in many
previous studies of mixing in remote sensing [9],[3],[10],[2],[4]. Under the as-
sumption that each photon that reaches the sensor has interacted with only
one cover type, the spectral reflectance of each mixed pixel in any wavelength,
can be considered as a linear combination of the spectral reflectances of the
components that constitute the mixture, weighted by their relative propor-
tions in the mixture. The spectra of the pure classes [11] are used as training
data necessary to perform the unmixing.

In this paper we investigate the ability to recover more classes than available
bands of a recently proposed method[1]. The method is appropriate for the
classification of whole regions of mixed pixels in a scene assuming that they
possess identical composition. The model is an extension of the linear mixing
model: The spectral reflectance of a mixed pixel in a spectral band is assumed
to be the linear superposition of the reflectances of the classes present in the
pixel, weighted by the fraction with which they contribute to the pixel. To
solve such a system of equations for the weights it is necessary to have as
many bands (equations) as unknowns (pure classes). For the case of sets of
mixed pixels for which we wish to determine the fractions of the pure classes
present in them, each set may be considered as an ensemble of instantiations
of the same random variable. Then the set of linear equations, that relate the
spectral reflectances of the pure and mixed classes, can be supplemented by
extra equations that relate the moments of the mixed and the pure pixel sets.
Bosdogianni et.al.[1] used this to add robustness to the set of equations. How-
ever, if we have extra equations, we may be able to solve systems for more
unknowns, at the expense of the added robustness. This paper investigates
theoretically this aspect of the proposed model, in particular with respect to
the accuracy it can achieve, its robustness and its breaking points. The in-
vestigation is done with the help of simulated sets of pixels distributed either
according to the normal distribution, or according to the uniform distribu-
tion, with parameters that closely follow distributions of real data. Finally,
the method is applied to some real data as well.

2 More components than bands

The set of equations for the mean values of the spectral reflectances for mixed
and pure classes according to the linear mixing model is:

w; = ax; + bﬂz + cz; + dv; (1)

where w; represents the mean value of the known spectral reflectance of the
mixed pixel distribution in band i, Z;, ¥;, Z; and ¥; represent the mean values



of the known spectral reflectances of the four possible cover components in the
mixed pixel, and a, b, ¢ and d represent the proportions of the four components
in the set of mixed pixels. Considering only two bands (i = 2), equation (1)
represents a set of 2 equations, one for each band. Adding the sum-to-one
constraint (a + b+ ¢+ d = 1), we finally end up with a total number of three
equations with four unknowns (the four fractions of the components). This
set, of equations is supplemented by the equations that relate the second order
moments of the distributions of the pure and mixed classes:

covw;w; = a2covxz~x,~ + b2covyz~y]- + C2C0UZZ'Z]' + dzcovvivj (2)

where covw;w;, covz;x;, covy,y;, covziz;, covv;v; represent the covariances of
mixed and pure distributions respectively between bands ¢ and j(i,j = 1, 2).
Equation (2) adds to the problem 3 more equations. As a result, 6 equa-
tions exist in total, with 4 unknowns. This is the case that inversion can be
performed by the Constrained Least Square Error method. The proportions
a,b,c and d can be calculated subject to the constraints that they must be
non-negative and add up to one. Our purpose is to determine the class com-
position of a hypothesised test site using the observed spectral response of
the mixed pixels and the training data that describe the pure classes. The
problem will be solved by exhaustive search of all possible combinations of
a,b,c and d to find the one that minimises the total square error. However,
the reliability of equations (2) is not the same as the reliability of equations
(1): second order moments of sets of samples are less reliably calculated than
first order moments. So, in the definition of the total square error, the errors
arising from the different equations are weighted inversely proportionally to
the standard error with which an indicative quantity of one of the variables
can be calculated. As such indicative quantities we use the quantities that
refer to the set of mixed pixels, i.e. we use the standard error with which the
statistics of mixed pixels are computed. Therefore, the total error we wish to
minimize is:
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where N is the number of mixed pixels. To evaluate the performance of the
model, the coverage proportions of the mixed pixels used are assumed to be
known in advance, by ground inspection, so that the results of the method
can be compared with the real proportions. It was assumed that the measured
mixing proportions were: a = 10%,b = 20%,c¢ = 30%,d = 40% for four



hypothetical classes X,Y,Z and V. For training, artificially created data were
used, presumed to be image training data extracted from a specific image. An
algorithm was developed to implement the above equation which exhaustively
searches all possible combinations of the proportions and returns the one that
minimises the square error. Accuracy of +1% for the percentage coverage
was considered to be enough for performing the exhaustive search. A series
of test runs were made to determine the capabilities and limitations of the
chosen model. We were especially interested in the accuracy of estimation of
the proportions and the effect on it of the characteristics and the number of
sample points used. The following section gives the results of the simulations.

3 Simulation results

3.1 Normally distributed data

As a first stage of assessing the model, normally distributed training data were
chosen to be used. In general, this type of distribution is very commonly used
in remote sensing applications. The simulated data that represent the pure
and mixed classes were created so as to approximate as much as possible,
real data found in some remote sensing applications[1]. The means and the
covariance matrices of the sets representing the pure classes were chosen as
shown in Table 1. The mean and covariance matrix of the mixed class were
computed from them using the proportions we chose.

g?zzliztical characteristics of the pure and mixed classes normally distributed
Class Mean Mean Variance | Variance | Covariance
(band 1) | (band 2) | (band 1) | (band 2) | (bands 1,2)
X 10 25 15 25 12
Y 40 40 25 7 5
Z 25 20 12 20 10
A% 20 40 18 15 8
W 24.5 32.5 5.11 4.73 2.5

Using the values of Table 1, five two-dimensional distributions for the five
components were created by random number generation. For evaluating the
applicability of our model the effect of the size of the pure and mixed data
set, on the proportion estimation was examined. So, in a first series of experi-
ments the mixed class was represented by 500 samples, but the pure classes,



by numbers varying from 200 to 8000. For each combination of values 100 dif-
ferent sets of pixel sets were drawn. For each set of pixel sets the proportions
were estimated as described above and the percentage error was calculated
for each variable. Then, these errors from the 100 sets of pixel sets were used
to calculate the mean and the standard deviation of the expected percentage
error. The results are shown in Figure 1.
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Fig. 1. Mean relative error of proportion estimation over 100 experiments versus the
size of the pure data set for normal distributions for 500 points of mixed data. The
true values of the proportions are: a = 10%,b = 20%,c = 30% and d = 40%. The
dashed lines indicate the minimum and maximum errors and the bars the standard
deviation of each distribution of errors.

In the second series of experiments, the pure classes were represented by 500
samples each and the mixed class by 200 up to 8000. Again, 100 different sets
of sample sets were created for each combination of populations, and statistics
over the errors of the method were compiled. These results are shown in Figure
2. The error bars represent the standard deviation of the error distribution
for each set. The extreme errors represent the highest and lowest values of
errors observed in every test. It is obvious that the errors obtained for the
case of 500 points proved to exhibit quite high values. Thus, to overcome the
problem of undersampling, we performed both the previous experiments using
10,000 points to represent the mixed class in the first experiment and the pure
classes in the second. The results of the simulations in Figures 3,4 show a great
improvement in the performance of the method. It seems that 3000 points of
pure or mixed data is enough to provide an insignificant error. It may also be
noted that the smallest proportions are estimated with less accuracy than the
largest ones. Furthermore, it seems important that a sufficient sample size of
mixed pixels is available since the model performs better in the case when the



mixed class is better defined than the pure classes.
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Fig. 2. Mean relative error of proportion estimation over 100 experiments versus the
size of the mixed data set for normal distributions for 500 points of pure data.
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Fig. 3. Mean relative error of proportion estimation over 100 experiments versus the
size of the pure data set for normal distributions for 10000 points of mixed data.
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Fig. 4. Mean relative error of proportion estimation over 100 experiments versus the
size of the mixed data set for normal distributions for 10000 points of pure data.The
true values of the proportions are: a = 10%,b = 20%, ¢ = 30% and d = 40%. The
dashed lines indicate the minimum and maximum errors and the bars the standard
deviation of each distribution of errors.

3.2 Uniformly distributed data

Table 2 gives the statistics of the uniform distributions of sample points cre-
ated. To create one such set, a large number of sample points was created over
a square area which was subsequently clipped to have a polygonal shape that
somehow resembled the shape of the distributions of the real data in [1]. Each
mixed pixel was generated as a linear combination of individual pure pixels
which were discarded from the pure distributions. Figures 5, 6, 7 and 8 show

Table 2
Statistical characteristics of the pure and mixed classes uniformly distributed

Class Mean Mean Variance | Variance

(band 1) | (band 2) | (band 1) | (band 2)

X 8.1 12.6 21.5 27.8
Y 38.4 43.6 37.6 42.8
Z 23.0 27.3 16.6 235
A% 16.0 23.2 36.8 41.7

the results obtained for these distributions. All experiments were contacted in



the same format as the experiments for the Gaussian distributions. The errors
here seem to be less dependent on the number of samples and smaller than in
the case of Gaussian distributions.

Errora

Errorc

150.0
— Relativemean error
130.0 N ——- Extremeerror
!
100t 1\
1 \\
/ -~
%0 | 1 N\ - N
/ - ~o
\ -
700 N
50.0
30.0
10.0
— —+ —+ + =
-10.0
0 2000 4000 6000 8000 10000
pure data set
45.0
— Relativemean error
35.0 ——- Extremeerror
2N
e \\\
-
250 /// AN
—_ P AN
150 -
5.0
= = T =
-5.0
0 2000 4000 6000 8000 10000

pure data set

Error b

Error d

45.0
- AN
Relative mean error // \
N [==- Extremeerror / \
I\ 4 \,
35.0 ;o\ 4 \
\ 7/ \
N / \
/ \ / \
1 \ 4 \
250} 1 \ e
1 \ _-
\ _-7
NP
150 _
50
-5.0
0 2000 4000 6000 8000 10000
pure data set
250
—— Relativemean error =
——- Extremeerror PN
- ~
- ~
Pl ~
——~~ prad >
150 e~
5.0
-5.0
0 2000 4000 6000 8000 10000
pure data set

Fig. 5. Mean relative error of proportion estimation over 100 experiments versus the
size of the pure data set for uniform distributions for 500 points of mixed data.
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Fig. 6. Mean relative error of proportion estimation over 100 experiments versus the
size of the mixed data set for uniform distributions for 500 points of pure data.The
true values of the proportions are: a = 10%,b = 20%,¢c = 30% and d = 40%. The
dashed lines indicate the minimum and maximum errors and the bars the standard
deviation of each distribution of errors.
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Fig. 7. Mean relative error of proportion estimation over 100 experiments versus the

size of the pure data set for uniform distributions for 10000 points of mixed data.
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4 Application to real satellite imagery

To evaluate the method with real satellite data, we used the data from Land-
sat TM image depicting various burned forest sites in Greece, for which
ground data are available. The data had been collected by NARF, (Institute
of Mediterranean Forest Ecosystem-National Agricultural research foundation
of Greece) as part of a project concerned with monitoring forest regeneration
from space. Four ground cover classes had been identified in each site by
ground inspection: aleppo pine, maquis, phrygana and bare soil. Although all
TM bands are available for the image that covers this area, we shall use only
the values of red and infrared bands to test our approach: We shall try to
identify four cover classes from only two spectral bands.

For our method, training data are necessary, representative of the four pure
classes. The terrain under consideration is characterised by great subpixel
variability due to sparse vegetation. As a result, it is impossible to extract
sets of pixels representing the pure classes from the image itself. Therefore,
the statistics (mean values and covariance matrices) of the pure classes had
to be derived from the use of mixed sites with known composition [1].

If « = 1,..,n where n is the number of the used spectral bands, then our
problem can be described by the equation:

Wk, = apT; + bpYs + e 2 + di0; (4)

where: £k = 1,..,m and m is the number of mixed sites used for training
(m > 4). This can also be expressed in a matrix form as:

W = PX (5)

where W is an (nm x 1) matrix containing the mean values of the m sites
in n bands, P is an (mn X 4n) matrix containing the proportions of the pure
classes, which are the same in all bands that refer to the same sites and X is
a (4n x 1) matrix containing the unknown mean values of the pure classes in
the n bands. Thus, equation (5) represents an overdetermined system of mn
equations for 4n unknowns. The system was solved for the vector of the mean
values, X, by taking the pseudoinverse of matrix P. A similar overdetermined
system of linear equations in a2, b2, ¢? and d? was solved for the estimation of
the elements of the covariance matrices of the pure classes.

There were 23 mixed sites available for training and 8 mixed sites for testing.
Each of these sites consisted of about 30 to 150 mixed pixels.

Initially, all 23 sites were used for training. After the solution of (5), the mixing
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proportions of the training sites were derived using the estimated spectral
characteristics of the pure classes. Only the proportions of 13 out of the 23
sites could be recovered to a satisfactory degree. This shows that there were
serious inconsistencies with the training data. The 10 sites that seemed to be
inconsistent with the rest were omitted, and system (5) was solved again for
the remaining 13 sites only. The characteristics of the pure classes computed
this way from the remaining sites are given in Table 3.

Table 3
Statistical characteristics of the pure classes as estimated from 13 sites.

Class Mean Mean Variance | Variance | Covariance

(band 1) | (band 2) | (band 1) | (band 2) | (bands 1,2)

S 55.35 56.91 87.15 77.72 73.12
AP 23.37 46.12 16.44 4.60 -5.05
20.15 50.28 51.01 99.47 16.60

P 13.7 24.88 21.33 62.49 37.27

In this table, S stands for the soil, AP for Aleppo Pine, M for maquis and P
for Phrygana.

Table 4 shows the results of estimating the mixing proportions of the 13 train-
ing sites. Two criteria used to judge success or failure were : According to the
first criterion, the classification was considered successful (hit) if the domi-
nant class only was correctly identified, otherwise, it was considered a “miss”.
According to the second criterion, the “hit” condition was accepted if the
dominant class was identified within an accuracy of £15%. Under the heading
“Ground”, the proportions of each class are given, as obtained from ground
inspection. Under the heading “Method”, the results as obtained from the
method discussed are provided. According to the first criterion all 13 sites
were classified correctly, while according to the second criterion, 7 out of the
13 sites were classified correctly.

Next the model was applied to the 8 sites that did not contribute to the
training process. The classification results were obtained by using the statistics
of pure classes estimated by the training procedure and are shown in Table 5.
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Table 4
Comparison of the classification results of our model with the ground truth data of
13 training sites.

Site Ground Method Results Results

num | S |AP| M | P | S | AP | M | P | criterionl || criterion2
1 200130 | 0 [H0| 31| 0O |25 44 HIT HIT
2 151 30 | O |55 14| 40 | O | 46 HIT MISS
3 35| 20 |10 | 35|46 | O 9 | 45 HIT MISS
4 55| 15 |10 | 20 || 53 | 29 | O | 18 HIT HIT
5 10 70 | 0 |20 || 3 | 57 | 13 |27 HIT MISS
6 15| 45 |30 |10 || 21| 65 | O |14 HIT MISS
7 201 60 | O |20 14| 65 (21| O HIT HIT
8 0|75 ] 0 |25 0| 64| 8|28 HIT HIT
9 5155 |5 3| 7|42 |30]21 HIT MISS
10 |15 O | 65|20 25| 8 |51]16 HIT MISS
11 |30 0 |40 |30 2 | 33 |37 28 HIT HIT
12 513 |0 [60| 013 | 0|65 HIT HIT
13 5 0 | 55|40 13| 4 |56 |27 HIT HIT

Table 5

Comparison of the classification results of our model with the ground truth data of

8 test sites.

Site Ground Method Results Results
num | S (AP | M| P | S| AP | M | P || criterionl || criterion2
1 5| 0 [ 5045 O | 25 |45 30 HIT HIT
2 0| 0 |8 |15 8 | O |57|35 HIT MISS
3 15165 | 0 |20 42| 58 | 0| O HIT HIT
4 10| 50 | O |40 33|57 | 1] 9 HIT HIT
5 35|35 | 5 |25 3 |58 | 4| 8 HIT MISS
6 30| 50 | 5 |15 || 13| 42 | 35| 10 HIT MISS
7 60| 10 | O |25 || 55| 4 |31]10 HIT HIT
8 5| 55 1030 6 | 44 | 0 | 50 MISS MISS

As it can be seen, the model performs very well in identifying correctly the
dominant class in the scene. It also showed ability in classifying the dominant
class within acceptable limits, in half of the cases.
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5 Conclusions

Real data are neither Gaussianly distributed nor uniformly. Real distributions
are usually something in between these two cases. It was shown that in general
2000-3000 sample points are necessary for each class, for an acceptable level
of error (error of the order of 5 — 10%). Such error levels are compatible with
the errors in ground data [1] and one should not expect to do much better
than that using satellite images. Having a few thousand pixels per class is
equivalent to having regions of size 30 x 30 to 100 x 100 pixels to classify.
For Landsat images with 30m resolution this corresponds to 1km? to 9km?2,
for SPOT data to 0.1km? regions of uniform coverage on the ground. This
is not unrealistic. In particular, data collected from sensors with even higher
resolution will be even more appropriate for this type of approach to spectral
unmixing. In general, it is possible to use this approach even with coarser data,
such as the NASA MODIS and ENVISAT MERIS instruments, provided that
each site can be represented by a large enough number of pixels for reliability.
On the other hand, if the intraclass variability is not as severe as that we
used here, one may be able to obtain reliable results with even fewer pixels
per class. The results, from applying the method to simulated data, show that
it presents high accuracy in identifying the primary class, and relatively low
accuracy in small proportion estimation.

At a first glance, the results of the experiments with real data appear poor.
However, as concluded above, for reliable results, one needs 2000-3000 points
to represent each class. The real data we had, used 30-150 points for each
class! One can see from figures 1-4 that for such levels of undersampling one
expects totally unreliable results. The fact that the method was able to identify
reasonably well the dominant class is a true success.

It should also be noted that the method was quite easy to implement and of
low computational cost.
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