previous    up   next

Conjunctive Fusion of the Four Spectral Bands MSS4 to MSS7
and Out-Image Data


In order to still improve classification, it is interesting to bring more information to the process of fusion. In addition to the spectral information provided by the spectral bands, information on the context of each class are added.

Out-image data have the same representation that spectral data: the samples of each class are used to build possibility distributions. Information thus arises in a numerical form like in the case of spectral information.


 Out-image data ``distance to roads'' and ``plateaux''


  

Table 20: Conjunctive fusion of spectral bands MSS4 to MSS7 and of out-image : distance to roads and plateaux.

Rates of classification obtained
$\mbox{\ }$Class       Number of pixels       

correctly classified    

(A)                 

Number of pixels

in samples      
  
(B)             
Rates of pixels     

correctly classified 
 
(A/B)           
       1 394 459 85.84%
       2 131 459 28.54%
       3 198 306 64.71%
       4 164 391 41.94%
       5 432 459 94.12%
       6 313 459 68.19%
       7 251 459 54.68%
       8 223 459 48.58%
       9 394 459 85.84%
TOTAL 2500 3910 63.94%



  

Table 21: Matrix of inter-classes confusion in percentage due to classification using conjunctive fusion of spectral bands MSS4 to MSS7 and out-image data : distance to roads and plateaux.

Classes Class observed Not
waited 1 2 3 4 5 6 7 8 9 classified
1 85.84 1.09 - 0.22 - - 0.22 - - 12.64
2 2.18 28.54 11.98 23.75 14.81 - - - - 18.74
3 - 5.56 64.71 5.56 - - 0.33 - - 23.86
4 0.26 4.60 17.14 41.94 5.12 - - - - 30.95
5 - 0.87 0.44 2.40 94.12 - - - - 2.18
6 7,84 - - - - 68.19 2.40 0.22 0,44 20.92
7 - - - - - 1.31 54.68 4.14 7.41 32.46
8 - - - - - - 1.74 48.58 43.79 5.88
9 - - - - - 1.74 9.15 1.96 85.84 1.31


 Out-image data ``distance to roads'', ``plateaux'' and ``valleys''

 Out-image data ``distance to roads'', ``plateaux'', ``valleys'' and ``slopes orientation''



.   

Table 22: Conjunctive fusion of spectral bands MSS4 to MSS7 and of out-image data : distance to roads, plateaux, valleys, slopes orientation , slope steepness, crests, irrigation, DEM and distance to the urban areas

Rates of classification obtained
$\mbox{\ }$Class       Number of pixels       

correctly classified    

(A)                 

Number of pixels

in samples      
  
(B)             
Rates of pixels     

correctly classified 
 
(A/B)           
       1 64 459 13.94%
       2 88 459 19.17%
       3 79 306 25.82%
       4 44 391 11.25%
       5 99 459 21.57%
       6 185 459 40.31%
       7 62 459 13.51%
       8 37 459 8.06%
       9 237 459 51.63%
TOTAL 895 3910 22.89%



.   

Table 23: Matrix of inter-classes confusion in percentage due to classification using conjunctive fusion of spectral bands MSS4 to MSS7 and of out-image data: distance to roads, plateaux, valleys, slope orientation, slope steepness, crests, irrigation, DEM and distance to urban areas

$\mbox{\ }$ Classes observed $\mbox{\ }$
Class expected 1 2 3 4 5 6 7 8 9 Unclassified
1 13.94 - - - - - - - - 86.06
2 - 19.17 - - - - - - - 80.83
3 - - 25.82 0.33 - - - - - 73.86
4 - - - 11.25 - - - - - 88.75
5 - - - 1,09 21.57 - - - - 77.34
6 3,49 - - - - 40.31 - - - 56.21
7 - - - - - - 13.51 - - 86.49
8 - - - - - - - 8.06 - 91.94
9 - - - - - - - - 51.63 48.37



      previous    up   next     
  
 IRIT-UPS